Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
L-arginineglycine amidinotransferase (AGAT) and its metabolites creatine and homoarginine (HA) have been linked to cardiovascular pathologies in both human and murine studies, but the underlying molecular mechanisms are poorly understood. Here, we report the first analysis of heart transcriptome variation using microarrays in an AGAT-deficient (AGAT-/-) mouse model to evaluate AGAT-, creatine- and HA-dependent gene regulation. Our data revealed significant differences of gene expression between AGAT-/- and wild-type (WT) mice, affecting cardiac energy metabolism (Fbp2, Ucp2), cardiac hypertrophy and fibrosis (Nppa, Ctgf), immune response (Fgl2), and the conduction system of the heart (Dsc2, Ehd4, Hcn2, Hcn4, Scn4a, Scn4b). this website All of these genes being expressed on WT level in creatine-supplemented mice. Using in silico analysis based on the GEO database we found that most of these candidate genes (Ctgf, Dsc2, Fbp2, Fgl2, Hcn2, Nppa) revealed significant alterations in a WT mouse model of myocardial infarction underlining a pathophysiological relationship between AGAT metabolism and cardiovascular disease.The pristine graphene described with massless Dirac fermion could bear topological insulator state and ferromagnetism via the band structure engineering with various adatoms and proximity effects from heterostructures. In particular, topological Anderson insulator state was theoretically predicted in tight-binding honeycomb lattice with Anderson disorder term. Here, we introduced physi-absorbed Fe-clusters/adatoms on graphene to impose exchange interaction and random lattice disorder, and we observed Anderson insulator state accompanying with Kondo effect and field-induced conducting state upon applying the magnetic field at around a charge neutral point. Furthermore, the emergence of the double peak of resistivity at ν = 0 state indicates spin-splitted edge state with high effective exchange field (>70 T). These phenomena suggest the appearance of topological Anderson insulator state triggered by the induced exchange field and disorder.Human embryonic stem cells (ESCs) offer a promising therapeutic approach for osteoarthritis (OA). The unlimited source of cells capable of differentiating to chondrocytes has potential for repairing damaged cartilage or to generate disease models via gene editing. However their use is limited by the efficiency of chondrogenic differentiation. An improved understanding of the transcriptional and post-transcriptional regulation of chondrogenesis will enable us to improve hESC chondrogenic differentiation protocols. Small RNA-seq and whole transcriptome sequencing was performed on distinct stages of hESC-directed chondrogenesis. This revealed significant changes in the expression of several microRNAs including upregulation of known cartilage associated microRNAs and those transcribed from the Hox complexes, and the downregulation of pluripotency associated microRNAs. Integration of miRomes and transcriptomes generated during hESC-directed chondrogenesis identified key functionally related clusters of co-expressed microRNAs and protein coding genes, associated with pluripotency, primitive streak, limb development and extracellular matrix. Analysis identified regulators of hESC-directed chondrogenesis such as miR-29c-3p with 10 of its established targets identified as co-regulated 'ECM organisation' genes and miR-22-3p which is highly co-expressed with ECM genes and may regulate these genes indirectly by targeting the chondrogenic regulators SP1 and HDAC4. We identified several upregulated transcription factors including HOXA9/A10/D13 involved in limb patterning and RELA, JUN and NFAT5, which have targets enriched with ECM associated genes. We have developed an unbiased approach for integrating transcriptome and miRome using protein-protein interactions, transcription factor regulation and miRNA target interactions and identified key regulatory networks prominent in hESC chondrogenesis.Superoscillation is a technique that is used to produce a spot of light (known as 'hotspot') which is smaller than the conventional diffraction limit of a lens and even smaller than the optical wavelength. Over the past few years, several techniques have been realized for the generation of the superoscillatory hotspot. In this article, for the first time to the best of our knowledge, we propose a novel and a more efficient technique for producing superoscillation in microscopic imaging by shaping the Coherent Transfer Function (CTF) of a lens via virtual Fourier filtering followed by a phase retrieval algorithm. We design and realize a phase mask which when placed at the pupil plane of a diffraction-limited lens produces a superoscillatory hotspot with sidelobes properly matched to the field of view (FOV) required in microscopic imaging applications, i.e. hotspot always coexists with huge intense rings known as 'sidebands' close to it and hence limiting the FOV. Our technique is also capable of extending the FOV with minimal loss in resolution of the hotspot generated and considerable ratio between the intensity of the hotspot to that of the side lobes while optimizing the obtainable FOV to the requirement of microscopy.Living cells are constantly exchanging momentum with their surroundings. So far, there is no consensus regarding how cells respond to such external stimuli, although it reveals much about their internal structures, motility as well as the emergence of disorders. Here, we report that twelve cell lines, ranging from healthy fibroblasts to cancer cells, hold a ubiquitous double power-law viscoelastic relaxation compatible with the fractional Kelvin-Voigt viscoelastic model. Atomic Force Microscopy measurements in time domain were employed to determine the mechanical parameters, namely, the fast and slow relaxation exponents, the crossover timescale between power law regimes, and the cell stiffness. These cell-dependent quantities show strong correlation with their collective migration and invasiveness properties. Beyond that, the crossover timescale sets the fastest timescale for cells to perform their biological functions.
Homepage: https://www.selleckchem.com/products/bzatp-triethylammonium-salt.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team