Notes
Notes - notes.io |
We analyze the multilayer structure of sunflower leaves from Terahertz data measured in the time-domain at a ps scale. read more Thin film reverse engineering techniques are applied to the Fourier amplitude of the reflected and transmitted signals in the frequency range f less then 1.5 Terahertz (THz). Validation is first performed with success on etalon samples. The optimal structure of the leaf is found to be a 8-layer stack, in good agreement with microscopy investigations. Results may open the door to a complementary classification of leaves.Using custom laser cavities to produce as the output some desired structured light field has seen tremendous advances lately, but there is no universal approach to designing such cavities for arbitrarily defined field structures within the cavity, e.g., at both the output and gain ends. Here we outline a general design approach for structured light from lasers which allows us to specify the required cavity for any selected structured light fields at both ends. We verify the approach by numerical simulation as well as by an unwrapped cavity experiment. The power of this approach is that the cavity can be designed to maximise the overlap with the available pump for higher powers, minimise thermal effects for higher brightness, and at the same time output a desired structured light field that may differ substantially from the gain-end profile. These benefits make this work appeal to the large laser communities interested in cavities for high brightness and/or customized output beams.Holograms can reconstruct the light wave field of three-dimensional objects. However, the computer-generated hologram (CGH) requires much calculating time. Here we proposed a CGH generation algorithm based on backward ray tracing and multiple off-axis wavefront recording planes (MO-WRP) to generate photorealistic CGH with a large reconstruction image. In this method, multiple WRPs were placed parallelly between the virtual object and the hologram plane. Virtual rays were emitted from the pixel of WRPs and intersect with the object. The complex amplitude of WRPs is then determined by illumination module, such as Phong reflection module. The CGH was generated by the shifted Angular Spectrum Propagation (ASP) from WRPs to the hologram plane. Experimental results demonstrate the effectiveness of this method, and the CGH generation rate is 37.3 frames per second (1 WRP) and 9.8 frames per second (2×2 WRPs).We developed a novel numerical simulation method for volume diffractive optics based on the Takagi-Taupin (TT) dynamical theory of diffraction. A general integral system of equations with a powerful and convenient distortion function was developed for finite-element analysis (FEA). The proposed framework is promising with regard to flexibility, robustness, and stability and has potential for solving dynamical X-ray diffraction problems related to diffractive optical elements of arbitrary shape and deformation. This FEA method was used for evaluating laterally graded multilayer (LGML) mirrors, and a general coordinate system was introduced to make the geometric optimization simple and effective. Moreover, the easily implemented boundary conditions inherent in FEA, combined with the analysis of the energy resolution derived from the TT theory, can make the simulation of volume diffractive optics, including LGML mirrors, more accurate. Thus, a comprehensive and highly efficient computation of LGML mirror diffraction problems was performed. The evaluation of the effects of the figure errors can provide practical guidance for the fabrication of X-ray optical elements.The quality of lithographically prepared structures is intimately related to the properties of the metal film from which they are fabricated. Here we compare two kinds of thin gold films on a silicon nitride membrane a conventional polycrystalline thin film deposited by magnetron sputtering and monocrystalline gold microplates that were chemically synthesised directly on the membrane's surface for the first time. Both pristine metals were used to fabricate plasmonic nanorods using focused ion beam lithography. The structural and optical properties of the nanorods were characterized by analytical transmission electron microscopy including electron energy loss spectroscopy. The dimensions of the nanorods in both substrates reproduced well the designed size of 240×80 nm2 with the deviations up to 20 nm in both length and width. The shape reproducibility was considerably improved among monocrystalline nanorods fabricated from the same microplate. Interestingly, monocrystalline nanorods featured inclined boundaries while the boundaries of the polycrystalline nanorods were upright. Q factors and peak loss probabilities of the modes in both structures are within the experimental uncertainty identical. We demonstrate that the optical response of the plasmonic nanorods is not deteriorated when the polycrystalline metal is used instead of the monocrystalline metal.In this paper, the one-dimensional photonic crystal Fano resonance heterostructure is used to achieve low-threshold and tunable graphene-based optical bistability of the transmitted and reflected light beam at optical communication band. The low-threshold of optical bistability (OB) originates from the local field enhancement owing to the Fano resonance excited by topological edge states mode and Fabry-Perot cavity mode. The study found that it is feasible to continuously adjust the hysteresis behavior and optical bistable thresholds by altering the Fermi energy of the left and right graphene respectively. Furthermore, the OB can also be controlled by changing the number of graphene layers or the angle of incident beam, which makes this structure a feasible object of experimental research at optical communication band in the future.Optical clearing methods reduce the optical scattering of biological samples and thereby extend optical imaging penetration depth. However, refractive index mismatch between the immersion media of objectives and clearing reagents induces spherical aberration (SA), causing significant degradation of fluorescence intensity and spatial resolution. We present an adaptive optics method based on pupil ring segmentation to correct SA in optically cleared samples. Our method demonstrates superior SA correction over a modal-based adaptive optics method and restores the fluorescence intensity and resolution at high imaging depth. Moreover, the method can derive an SA correction map for the whole imaging volume based on three representative measurements. It facilitates SA correction during image acquisition without intermittent SA measurements. We applied this method in mouse brain tissues treated with different optical clearing methods. The results illustrate that the synaptic structures of neurons within 900 μm depth can be clearly resolved after SA correction.
Website: https://www.selleckchem.com/products/jh-re-06.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team