Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Communicated by Ramaswamy H. Sarma.Coronavirus disease (COVID-19), a life-threatening disease, is caused by SARS-CoV-2. The targeted therapeutics of small molecules helps the scientific community to fight against SARS-CoV-2. In this article, some oxazine substituted 9-anilinoacridines (A1-A48) was designed by docking, MM-GBSA and molecular dynamics (MD) simulation studies for their COVID-19 inhibitory activity. The docking of ligands A1-A48 against SARS-CoV-2 (PDB ID 5R82) are performed by using Glide module, in silico ADMET screening by QikProp module, binding energy using Prime MM-GB/SA module, MD simulation by Desmond module and atomic charges were derived by Jaguar module of Schrodinger suit 2019-4. Compound A38 has the highest G-score (-7.83) when compared to all the standard compounds which are proposed for COVID-19 treatment such as ritonavir (-7.48), lopinavir (-6.94), nelfinavir (-5.93), hydroxychloroquine (-5.47) and mataquine (-5.37). Compounds A13, A23, A18, A7, A48, A46, A32, A20, A1 and A47 are significantly active against SARS-CoV-2 main protease when compared with hydroxychloroquine and mataquine. The residues GLN19, THR24, THR25, THR26, LEU27, HIE41, SER46, MET49, ASN119, ASN142, HIE164, MET165, ASP187, ARG188 and GLN189 of SARS-CoV-2 main protease play a crucial role in binding with ligands. The in silico ADMET properties of the molecules are within the recommended values. The binding free energy was calculated using PRIME MM-GB/SA studies. From the ligands A38, A13, A23, A18, A7, A48 and A46 with significant Glide scores may produce significant COVID-19 activity for further development. Compound A38 was subjected to MD simulation at 100 ns to study the dynamic behaviour of protein-ligand complex. Communicated by Ramaswamy H. Sarma.The sudden outburst of Coronavirus disease (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) poses a massive threat to global public health. Currently, no therapeutic drug or vaccine exists to treat COVID-19. Due to the time taking process of new drug development, drug repurposing might be the only viable solution to tackle COVID-19. RNA-dependent RNA polymerase (RdRp) catalyzes SARS-CoV-2 RNA replication and hence, is an obvious target for antiviral drug design. Interestingly, several plant-derived polyphenols effectively inhibit the RdRp of other RNA viruses. More importantly, polyphenols have been used as dietary supplementations for a long time and played beneficial roles in immune homeostasis. We were curious to study the binding of polyphenols with SARS-CoV-2 RdRp and assess their potential to treat COVID-19. Herein, we made a library of polyphenols that have shown substantial therapeutic effects against various diseases. They were successfully docked in the catalytic pocket of RdRp. The investigation reveals that EGCG, theaflavin (TF1), theaflavin-3'-O-gallate (TF2a), theaflavin-3'-gallate (TF2b), theaflavin 3,3'-digallate (TF3), hesperidin, quercetagetin, and myricetin strongly bind to the active site of RdRp. Further, a 150-ns molecular dynamic simulation revealed that EGCG, TF2a, TF2b, TF3 result in highly stable bound conformations with RdRp. The binding free energy components calculated by the MM-PBSA also confirm the stability of the complexes. We also performed a detailed analysis of ADME prediction, toxicity prediction, and target analysis for their druggability. Overall, our results suggest that EGCG, TF2a, TF2b, TF3 can inhibit RdRp and represent an effective therapy for COVID-19. Communicated by Ramaswamy H. Sarma.Carcinoembryonic antigen-related cell adhesion (CEACAM) molecules belong to a family of membrane glycoproteins that mediate intercellular interactions influencing cellular growth, immune cell activation, apoptosis, and tumor suppression. Several family members (CEACAM1, CEACAM5, and CEACAM6) are highly expressed in cancers, and they share a conserved N-terminal domain that serves as an attractive target for cancer immunotherapy. A multi-epitope vaccine candidate against this conserved domain has been developed using immunoinformatics tools. Specifically, several epitopes predicted to interact with MHC class I and II molecules were linked together with appropriate linkers. MLN7243 in vivo The tertiary structure of the vaccine is generated by homology and ab initio modeling. Molecular docking of epitopes to MHC structures have revealed that the lowest energy conformations are the epitopes bound to the antigen-binding groove of the MHC molecules. Subsequent molecular dynamics simulation has confirmed the stability of the binding conformations in solution. The predicted vaccine has relatively high antigenicity and low allergenicity, suggesting that it is an ideal candidate for further refinement and development. Communicated by Ramaswamy H. Sarma.Background NCOR1 (nuclear receptor corepressor 1) is an essential coregulator of gene transcription. It has been shown that NCOR1 in macrophages plays important roles in metabolic regulation. However, the function of macrophage NCOR1 in response to myocardial infarction (MI) or vascular wire injury has not been elucidated. Methods and Results Here, using macrophage Ncor1 knockout mouse in combination with a mouse model of MI, we demonstrated that macrophage NCOR1 deficiency significantly reduced infarct size and improved cardiac function after MI. In addition, macrophage NCOR1 deficiency markedly inhibited neointimal hyperplasia and vascular remodeling in a mouse model of arterial wire injury. Inflammation and macrophage proliferation were substantially attenuated in hearts and arteries of macrophage Ncor1 knockout mice after MI and arterial wire injury, respectively. Cultured primary macrophages from macrophage Ncor1 knockout mice manifested lower expression of inflammatory genes upon stimulation by interleukin-1β, interleukin-6, or lipopolysaccharide, together with much less activation of inflammatory signaling cascades including signal transducer and activator of transcription 1 and nuclear factor-κB. Furthermore, macrophage Ncor1 knockout macrophages were much less proliferative in culture, with inhibited cell cycle progression compared with control cells. Conclusions Collectively, our data have demonstrated that NCOR1 is a critical regulator of macrophage inflammation and proliferation and that deficiency of NCOR1 in macrophages attenuates MI and neointimal hyperplasia. Therefore, macrophage NCOR1 may serve as a potential therapeutic target for MI and restenosis.
Read More: https://www.selleckchem.com/products/tak-243-mln243.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team