Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Worldwide cardiovascular diseases such as stroke and heart disease are the leading cause of mortality. While guidewire/catheter-based minimally invasive surgery is used to treat a variety of cardiovascular disorders, existing passive guidewires and catheters suffer from several limitations such as low steerability and vessel access through complex geometry of vasculatures and imaging-related accumulation of radiation to both patients and operating surgeons. To address these limitations, magnetic soft continuum robots (MSCRs) in the form of magnetic field-controllable elastomeric fibers have recently demonstrated enhanced steerability under remotely applied magnetic fields. While the steerability of an MSCR largely relies on its workspace-the set of attainable points by its end effector-existing MSCRs based on embedding permanent magnets or uniformly dispersing magnetic particles in polymer matrices still cannot give optimal workspaces. The design and optimization of MSCRs have been challenging because of the lack of efficient tools. Here, we report a systematic set of model-based evolutionary design, fabrication, and experimental validation of an MSCR with a counterintuitive nonuniform distribution of magnetic particles to achieve an unprecedented workspace. The proposed MSCR design is enabled by integrating a theoretical model and the genetic algorithm. The current work not only achieves the optimal workspace for MSCRs but also provides a powerful tool for the efficient design and optimization of future magnetic soft robots and actuators.Fungi produce a wealth of pharmacologically bioactive secondary metabolites (SMs) from biosynthetic gene clusters (BGCs). It is common practice for drug discovery efforts to treat species' secondary metabolomes as being well represented by a single or a small number of representative genomes. However, this approach misses the possibility that intraspecific population dynamics, such as adaptation to environmental conditions or local microbiomes, may harbor novel BGCs that contribute to the overall niche breadth of species. Using 94 isolates of Aspergillus flavus, a cosmopolitan model fungus, sampled from seven states in the United States, we dereplicate 7,821 BGCs into 92 unique BGCs. We find that more than 25% of pangenomic BGCs show population-specific patterns of presence/absence or protein divergence. CX-5461 RNA Synthesis inhibitor Population-specific BGCs make up most of the accessory-genome BGCs, suggesting that different ecological forces that maintain accessory genomes may be partially mediated by population-specific differences in secondary metabolism. We use ultra-high-performance high-resolution mass spectrometry to confirm that these genetic differences in BGCs also result in chemotypic differences in SM production in different populations, which could mediate ecological interactions and be acted on by selection. Thus, our results suggest a paradigm shift that previously unrealized population-level reservoirs of SM diversity may be of significant evolutionary, ecological, and pharmacological importance. Last, we find that several population-specific BGCs from A. flavus are present in Aspergillus parasiticus and Aspergillus minisclerotigenes and discuss how the microevolutionary patterns we uncover inform macroevolutionary inferences and help to align fungal secondary metabolism with existing evolutionary theory.As populations boom and bust, the accumulation of genetic diversity is modulated, encoding histories of living populations in present-day variation. Many methods exist to decode these histories, and all must make strong model assumptions. It is typical to assume that mutations accumulate uniformly across the genome at a constant rate that does not vary between closely related populations. However, recent work shows that mutational processes in human and great ape populations vary across genomic regions and evolve over time. This perturbs the mutation spectrum (relative mutation rates in different local nucleotide contexts). Here, we develop theoretical tools in the framework of Kingman's coalescent to accommodate mutation spectrum dynamics. We present mutation spectrum history inference (mushi), a method to perform nonparametric inference of demographic and mutation spectrum histories from allele frequency data. We use mushi to reconstruct trajectories of effective population size and mutation spectrum divergence between human populations, identify mutation signatures and their dynamics in different human populations, and calibrate the timing of a previously reported mutational pulse in the ancestors of Europeans. We show that mutation spectrum histories can be placed in a well-studied theoretical setting and rigorously inferred from genomic variation data, like other features of evolutionary history.Increasing evidence demonstrates that long non-coding RNAs (lncRNA) play a vital role in the progression of tumors, containing esophageal squamous cell carcinoma (ESCC). LINC00239 was reported as an oncogene in diverse kinds of cancers, whereas its specific role is still unclear in ESCC. In this study, we detected the expression and functional role of LINC00239 in ESCC specimens and cells, and investigated the molecular mechanisms of it. LINC00239 was highly expressed in ESCC tissues and cells, and was related to poor prognosis of patients with ESCC. The proliferation, metastasis, and invasion ability as well as epithelial-mesenchymal transition (EMT) process were all enhanced in LINC00239-overexpressed ESCC cells. LINC00239 was upregulated in TGF-β1-treated ESCC cells. Furthermore, LINC00239 was found to bind directly to the transcription factor c-Myc promoter-binding protein-1 (MBP-1). MBP-1 was detected to inhibit the transcription of c-Myc in ESCC. Moreover, LINC00239 could activate c-Myc transcription through influencing MBP-1-binding ability to c-Myc promoter. These data suggest that LINC00239 may act as an oncogene to promote the transcription of c-Myc by competitively combining with MBP-1 in ESCC, and may serve as a potential target for antitumor therapy in ESCC. IMPLICATIONS LINC00239 may function as an oncogenic lncRNA in ESCC through the LINC00239/MBP-1/c-Myc axis to activate EMT process.
My Website: https://www.selleckchem.com/products/cx-5461.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team