Notes
![]() ![]() Notes - notes.io |
Antifouling polymer brushes are widely used to inhibit the formation of protein corona on nanoparticles (NPs) and subsequent accumulation in the liver and spleen. Herein, we demonstrate a θ-solvent-mediated method for the preparation of gold nanoparticles with a high polyethylene glycol (PEG) grafting density. Reaching the θ-solvent by adding salt (e.g., Na2SO4) can significantly increase the grafting density of the PEG brush to 2.08 chains/nm2. The PEG polymer brush prepared in the θ-solvent possesses a double-shell structure consisting of a concentrated polymer brush (CPB) and a semidilute polymer brush (SDPB), denoted as NP@CPB@SDPB, while those prepared in a good solvent have only a SDPB shell, i.e., NP@SDPB. Compared to the NP@SDPB structure, the NP@CPB@SDPB structure decreases the liver accumulation from 34.0%ID/g to 23.1%ID/g, leading to an increase in tumor accumulation from 8.5%ID/g to 12.8%ID/g. read more This work provides new insights from the perspective of polymer physical chemistry into the improved stealth properties and delivery efficiency of NPs, which will accelerate the clinical translation of nanomedicine.The rapid evolution of wearable technologies is giving rise to a strong push for textile chemical sensors design targeting the real-time collection of vital parameters for improved healthcare. Among the most promising applications, monitoring of nonhealing wounds is a scarcely explored medical field that still lacks quantitative tools for the management of the healing process. In this work, a smart bandage is developed for the real-time monitoring of wound pH, which has been reported to correlate with the healing stages, thus potentially giving direct access to the wound status without disturbing the wound bed. The fully textile device is realized by integrating a sensing layer, including the two-terminal pH sensor made of a semiconducting polymer and iridium oxide particles, and an absorbent layer ensuring the delivery of a continuous wound exudate flow across the sensor area. The two-terminal sensor exhibits a reversible response with a sensitivity of (59 ± 4) μA pH-1 in the medically relevant pH range for wound monitoring (pH 6-9), and its performance is not substantially affected either by the presence of the most common chemical interferents or by temperature gradients from 22 to 40 °C. Thanks to the robust sensing mechanism based on potentiometric transduction and the simple device geometry, the fully assembled smart bandage was successfully validated in flow analysis using synthetic wound exudate.Herein we report single-crystal X-ray diffraction characterization and complementary solution studies of supramolecular interaction between potassium salts and heteroleptic homo- and heteronuclear triple-decker crown phthalocyaninates [(15C5)4Pc]M*[(15C5)4Pc]M(Pc) or [M*,M], where M* and M = Y and/or Tb. Our results evidence that, in contrast to the previously studied crown-substituted phthalocyanines, the interaction of K+ cations with [M*,M] does not induce their intermolecular aggregation. Instead, the cations reversibly intercalate between the crown-substituted phthalocyanine ligands, resulting in switching of the coordination polyhedron of the metal center M* from square-antiprismatic to square-prismatic. In the case of terbium(III) complexes, such a switching alters their magnetic properties, which can be read-out by 1H NMR spectroscopy. For [Tb*,Y], such a switching causes an almost 25% increase in the axial component of the magnetic susceptibility tensor. Even though the polyhedron of the paramagnetic center in [Y*,Tb] is not switched, minor structural perturbations associated with the overall reorganization of the receptor also cause smaller, but nevertheless appreciable, growth of the axial anisotropy. The observed effects render the studied complexes as molecular switches with tunable magnetic properties.Readily deployable, low-cost point-of-care medical devices such as lateral flow assays (LFAs), microfluidic paper-based analytical devices (μPADs), and microfluidic thread-based analytical devices (μTADs) are urgently needed in resource-poor settings. Governed by the ASSURED criteria (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverability) set by the World Health Organization, these reliable platforms can screen a myriad of chemical and biological analytes including viruses, bacteria, proteins, electrolytes, and narcotics. The Ebola epidemic in 2014 and the ongoing pandemic of SARS-CoV-2 have exemplified the ever-increasing importance of timely diagnostics to limit the spread of diseases. This review provides a comprehensive survey of LFAs, μPADs, and μTADs that can be deployed in resource-limited settings. The subsequent commercialization of these technologies will benefit the public health, especially in areas where access to healthcare is limited.Opioid use disorders and fatal overdose due to consumption of fentanyl-laced heroin remain a major public health menace in the United States. Vaccination may serve as a promising potential remedy to combat accidental overdose and to mitigate the abuse potential of opioids. We previously reported the heroin and fentanyl monovalent vaccines carrying, respectively, a heroin hapten, 6-AmHap, and a fentanyl hapten, para-AmFenHap, conjugated to tetanus toxoid (TT). Herein, we describe the mixing of these antigens to formulate a bivalent vaccine adjuvanted with liposomes containing monophosphoryl lipid A (MPLA) adsorbed on aluminum hydroxide. Immunization of mice with the bivalent vaccine resulted in IgG titers of >105 against both haptens. The polyclonal sera bound heroin, 6-acetylmorphine, morphine, and fentanyl with dissociation constants (Kd) of 0.25 to 0.50 nM. Mice were protected from the anti-nociceptive effects of heroin, fentanyl, and heroin +9% (w/w) fentanyl. No cross-reactivity to methadone and buprenorphine was observed in vivo. Naloxone remained efficacious in immunized mice. These results highlighted the potential of combining TT-6-AmHap and TT-para-AmFenHap to yield an efficacious bivalent vaccine that could ablate heroin and fentanyl effects. This vaccine warrants further testing to establish its potential translatability to humans.
Here's my website: https://www.selleckchem.com/products/adenine-sulfate.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team