Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Quantitative ultrasound techniques based on the parametrization of the backscatter coefficient (BSC) are used to characterize concentrated particle suspensions. Specifically, a scattering model is fit to the measured BSC and the fit parameters can provide local suspension properties. The scattering models generally assume an isotropic microstructure (i.e., spatial organization) of the scatterers, whereas the sheared concentrated suspensions can develop an anisotropic microstructure. This paper studied the influence of the shear-induced anisotropic microstructure of concentrated suspensions on the ultrasonic backscattering. Experiments were conducted on suspensions of polymethylmetacrylate spheres (5.8 μm in radius) sheared in a Couette flow device to obtain anisotropic microstructure and then mixed by hand to obtain isotropic microstructure. Experimental structure factors that are related to the spatial distribution of sphere positions were obtained by comparing the BSCs of one concentrated and one diluted suspension. Finally, Stokesian dynamics numerical simulations of sheared concentrated suspensions are used to determine the pair correlation function, which is linked to the Fourier transform of the structure factor. The experimental structure factors are found to be in good agreement with numerical simulations. The numerical simulation demonstrates that the angular-dependent BSCs and structure factors are caused by the shear-induced anisotropic microstructure within the suspension.Burst wave lithotripsy is a method to noninvasively fragment urinary stones by short pulses of focused ultrasound. In this study, physical mechanisms of stone fracture during burst wave lithotripsy were investigated. Photoelasticity imaging was used to visualize elastic wave propagation in model stones and compare results to numerical calculations. Epoxy and glass stone models were made into rectangular, cylindrical, or irregular geometries and exposed in a degassed water bath to focused ultrasound bursts at different frequencies. A high-speed camera was used to record images of the stone during exposure through a circular polariscope backlit by a monochromatic flash source. Imaging showed the development of periodic stresses in the stone body with a pattern dependent on frequency. These patterns were identified as guided wave modes in cylinders and plates, which formed standing waves upon reflection from the distal surfaces of the stone model, producing specific locations of stress concentration in the models. Measured phase velocities compared favorably to numerically calculated modes dependent on frequency and material. Artificial stones exposed to bursts produced cracks at positions anticipated by this mechanism. These results support guided wave generation and reflection as a mechanism of stone fracture in burst wave lithotripsy.The fully coupled vibroacoustic interaction of sandwich panels is studied using the finite and the boundary element methods. The extent of radiation damping is quantified for various configurations based on both harmonic response analyses and modal analyses. Opicapone The underlying nonlinear eigenvalue problem is solved using a projection method based on contour integration yielding the shifted (wet) eigenfrequencies, modal radiation loss factors, and air-loaded structural modes. The numerical results clearly illustrate the relevance of air-loading when studying the vibration of sandwich structures. Further, the numerically obtained estimates for radiation damping are compared to both theoretical expressions and experimental results found in the literature. Although good agreement is observed in general, the comparison indicates the limited applicability of commonly used theoretical expressions when coincidence occurs in a frequency range where the modes are still well separated. Moreover, possible sources of error when experimentally determining radiation damping are discussed in detail. The results presented in this paper provide deep insights into the phenomenon of acoustic radiation damping and help to estimate its relevance in future research.Active structural acoustic control (ASAC) is a widely used active noise control technique that provides control of structurally radiated noise through actuation of the radiating structure. Typically, ASAC drives structural actuators to minimise a real-time measurement of the radiated sound field. However, it is often not practical to position error microphones in the radiated sound field. To overcome this limitation, a number of methods have previously been proposed. One such method utilises the radiation resistance matrix to map structural response measurements to the acoustic response and, thus, enable an estimate of the structurally radiated sound power from structural measurements alone. This has previously relied upon precise modelling of the radiating structure which, for practical structures, can lead to limitations in the accuracy of the estimate. In this paper, an ASAC strategy that utilises an experimentally identified radiation resistance matrix is presented. The robustness of both the sound power estimation and the ASAC controller to system uncertainties is investigated, and it has been shown that the proposed ASAC strategy is able to achieve effective control of the radiated sound power.Listeners show better-than-chance discrimination of nasalized and oral vowels occurring in appropriate consonantal contexts. Yet, the methods for investigating partial perceptual compensation for nasal coarticulation often include nasal and oral vowels containing naturally different pitch contours. Listeners may therefore be discriminating between these vowels based on pitch differences and not nasalization. The current study investigates the effect of pitch variation on the discrimination of nasalized and oral vowels in C_N and C_C items. The f0 contour of vowels within paired discrimination trials was varied. The results indicate that pitch variation does not influence patterns of partial perceptual compensation for coarticulation.Listeners with sensorineural hearing loss routinely experience less spatial release from masking (SRM) in speech mixtures than listeners with normal hearing. Hearing-impaired listeners have also been shown to have degraded temporal fine structure (TFS) sensitivity, a consequence of which is degraded access to interaural time differences (ITDs) contained in the TFS. Since these "binaural TFS" cues are critical for spatial hearing, it has been hypothesized that degraded binaural TFS sensitivity accounts for the limited SRM experienced by hearing-impaired listeners. In this study, speech stimuli were noise-vocoded using carriers that were systematically decorrelated across the left and right ears, thus simulating degraded binaural TFS sensitivity. Both (1) ITD sensitivity in quiet and (2) SRM in speech mixtures spatialized using ITDs (or binaural release from masking; BRM) were measured as a function of TFS interaural decorrelation in young normal-hearing and hearing-impaired listeners. This allowed for the examination of the relationship between ITD sensitivity and BRM over a wide range of ITD thresholds.
My Website: https://www.selleckchem.com/products/opicapone.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team