Notes
![]() ![]() Notes - notes.io |
Consuming green tea has many health benefits, including regulating bone metabolism and ameliorating osteoporosis, mainly in older and postmenopausal women. This osteoprotective effect has been attributed to the biologically active polyphenol (-)-epigallocatechin-3-gallate (EGCG). Although EGCG inhibits osteoclastogenesis, its underlying molecular mechanism remains to be elucidated. Interaction between receptor activator of nuclear factor (NF)-κB ligand (RANKL) and RANK plays critical roles in the differentiation and activation of osteoclasts and is therefore considered a therapeutic target for osteoclast-related diseases such as osteoporosis. In the present study, we found that EGCG can bind directly to RANK and RANKL and interfere with their interaction, thereby suppressing RANKL-induced phosphorylation of IKKα/β, IκBα, p65, JNK, ERK1/2, and p38 and key downstream regulatory factors, including nuclear factor of activated T cell c1 (NFATc1), c-Fos, tartrate-resistant acid phosphatase (TRAP), c-Src, and cathepsin K, in osteoclast precursors. This can ultimately inhibit osteoclastogenesis. Taken together, our results show that EGCG can bind directly to RANK and RANKL and block their interaction and that, by inhibiting NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways, it negatively regulates RANKL-induced osteoclastogenesis in RAW 264.7 cells. Thus, regular consumption of EGCG in green tea can inhibit the development and progression of osteoclast-related diseases.The aim of the present study was to explore the effects of Ginkgolide A (GA) on renal function of mice with sepsis and whether GA could attenuate sepsis-associated inflammation and apoptosis in kidney via upregulating microRNA (miR)-25 with NADPH oxidase 4 (Nox4) as the target. Experiments were carried out on lipopolysaccharide (LPS)-treated mice and kidney tubular (NRK-52E) cells. GA significantly inhibited the increases of creatinine (Cr), blood urea nitrogen (BUN) and cystatin C (CysC) in the serum of LPS-treated mice. The increases of inflammatory factors including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 in the kidneys of LPS-treated mice or NRK-52E cells were inhibited by GA administration. The changes of cleaved-caspase 3, cleaved-caspase 8, Bax, Bcl2 in mouse kidney and NRK-52E cells treated by LPS were reversed by GA administration. The sepsis-induced decrease of miR-25 was enhanced by GA treatment. The LPS-induced increases of inflammatory factors and apoptosis in mouse kidney or NRK-52E cells were attenuated after miR-25 agomiR administration. The bioinformatics analysis and luciferase reporter assays showed that Nox4 was a direct target gene of miR-25. Treatment with miR-25 inhibited Nox4 expression, while Nox4 over-expression reversed the inhibiting effects of miR-25 agomiR on LPS-induced increases of inflammatory factors and apoptosis in NRK-52E cells. These results indicated that GA could improve sepsis-induced renal damage by attenuating renal inflammation and apoptosis via upregulating miR-25 with Nox4 as the target.Breast cancer is the most frequent cancer among females and the second most common cause of cancer deaths worldwide. Tumor-associated macrophages (TAMs) are the most abundant immune cell population in the tumor microenvironment, including breast cancer. Breast cancer stem cells (BCSCs) play an important role in regulating breast cancer growth and metastasis, which still remains an obstacle for successful treatment of breast cancer and requires further investigation, as well as the potential therapeutic strategies. Cytokine array validated that C-X-C motif chemokine ligand 8 (CXCL8) is a pivotal chemokine secreted by TAMs, and CXCL8 could enhance breast cancer migration, invasion ability, and epithelial-mesenchymal transition (EMT) in both animal and human breast cancer. In this study, the clinical data firstly indicated that high CXCL8 expression was significantly associated with metastasis and tumor growth in breast cancer patients. Then, we showed that TAMs-released CXCL8 could markedly elevate the migration, invasion and EMT events in breast cancer cells, as well as the self-renewal of BCSCs in vitro. These processes were markedly abrogated by the treatment of Danirixin, a reversible and selective antagonist of CXC chemokine receptor 2 (CXCR2). Consistently, the in vivo analysis confirmed that CXCL8 suppression using Danirixin effectively reduced the tumor growth, lung metastasis and repressed the self-renewal of BCSCs. Collectively, TAMs/CXCL8 could enhance BCSCs self-renewal and breast cancer metastasis, and these effects could be markedly abolished by Danirixin treatment, suppressing breast cancer progression consequently. Therefore, Danirixin could be considered as a novel and effective therapeutic strategy for breast cancer treatment without obvious toxicity to major organs.
The purpose of this systematic review was to review and synthesize the current evidence on speech and language outcomes of children with Obstructive Sleep Apnea (OSA), or more broadly sleep-disordered breathing.
A comprehensive literature search was conducted across 5 databases. Studies were selected based on the following criteria 1) peer-reviewed research published between 2000 and 2020, 2) available in English or accessible non-English data, 3) children aged 2-13 years diagnosed with Sleep Disordered Breathing (SDB) or OSA, and 4) speech and language outcomes examined within research.
Studies were appraised using PEDro-P and the overall certainty of evidence using Grading of Recommendations Assessment, Development and Evaluation (GRADE). RGDyK Six studies met the current review selection criteria one paper examined speech outcomes and the remaining five examined receptive and expressive language outcomes. The overall quality of the body of evidence was rated as very low, with methodological weaknesses present in study designs and sample sizes.
Speech and language difficulties are common in children with OSA/SDB, in addition to neurocognitive and/or neurobehavioral issues. Further investigation of specific speech and language skills, which are compromised in this population, is needed to guide clinical practice and decision making, with particular involvement from speech-language pathologists.
Speech and language difficulties are common in children with OSA/SDB, in addition to neurocognitive and/or neurobehavioral issues. Further investigation of specific speech and language skills, which are compromised in this population, is needed to guide clinical practice and decision making, with particular involvement from speech-language pathologists.
Read More: https://www.selleckchem.com/products/cyclo-rgdyk.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team