Notes
![]() ![]() Notes - notes.io |
Reduction in amplificability is similar to that reported for some autoclave conditions. Our assays might allow for the detection of up to 1000 mg/kg of hazelnut, pistachio and cashew flours after being submitted to DIC treatment in food matrices.Lung cancer development relies on cell proliferation and migration, which in turn requires interaction with extracellular matrix (ECM) components such as glycosaminoglycans (GAGs). The mechanisms through which GAGs regulate cancer cell functions are not fully understood but they are, in part, mediated by controlled interactions with cytokines and growth factors (GFs). In order to mechanistically understand the effect of the degree of sulfation (DS) of GAGs on lung adenocarcinoma (LUAD) cells, we synthesized sulfated alginate (AlgSulf) as sulfated GAG mimics with DS = 0.0, 0.8, 2.0, and 2.7. Human (H1792) and mouse (MDA-F471) LUAD cell lines were treated with AlgSulf of various DSs at two concentrations 10 and 100 µg/mL and their anti-tumor properties were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), trypan blue exclusion, and wound healing assays for 2D models and sphere formation assay for the 3D model. The proliferation and number of live MDA-F471 cells at the concentration of 100 µg/mL decreased significantly with the increase in the DS of biomimetic GAGs. In addition, the increase in the DS of biomimetic GAGs decreased cell migration (p less then 0.001 for DS = 2.0 and 2.7 compared to control) and decreased the diameter and number of spheres formed (p less then 0.001). The increased DS of biomimetic GAGs attenuated the expression of cancer stem cell (CSC)/progenitor markers in the 3D cultures. In conclusion, GAG-mimetic AlgSulf with increased DS exhibit enhanced anti-proliferative and migratory properties while also reducing growth of KRAS-mutant LUAD spheres in vitro. We suggest that these anti-tumor effects by GAG-mimetic AlgSulf are possibly due to differential binding to GFs and consequential decreased cell stemness. AlgSulf may be suitable for applications in cancer therapy after further in vivo validation.Inorganically-bound sand cores are used in many light-metal foundries to form cavities in the cast part, which cannot be realised by the mould itself. To enable FEM simulations with core materials, their mechanical properties have to be measured. In this article, we adapt methods to determine the Young's and shear modulus, the Poisson ratio and the fracture strain of sand cores. This allows us to fully parametrise an ideal brittle FEM model. We found that the Young's and shear modulus can be obtained acoustically via the impulse excitation technique. The fracture strain was measured with a high-speed camera and a digital image correlation algorithm.We aimed to design and validate a new questionnaire of adherence to healthy food pyramid (HFP) (AP-Q), to improve previous instruments. The questionnaire was self-administered and included 28 questions from 10 categories (physical activity, health habits, hydration, grains, fruits, vegetables, oil type, dairy products, animal proteins, and snacks). A population of 130 Spanish adults answered it, obtaining scores from each category and a global score of HFP adherence (AP-Q score). Validation was performed through principal components analysis (PCA) and internal consistency by Cronbach's alpha. AP-Q was also externally validated with Kidmed-test, answered by 45 individuals from the cohort. The global AP-Q score was 5.1 ± 1.3, with an internal consistency of 64%. The PCA analysis extracted seven principal components, which explained 68.5% of the variance. The global AP-Q score was positively associated with Kidmed-test score. Our data suggest that AP-Q is a complete and robust questionnaire to assess HFP adherence, with several advantages easy to complete, cost-effective, timesaving and has the competency to assess, besides diet, several features affecting health status, lacking in other instruments. We suggest that AP-Q could be useful in epidemiological research, although it requires additional calibration to analyze its reproducibility and validation in other populations.An electrochemical portable device based on linear sweep voltammetry was evaluated for studying the redox behavior of polyphenolic compounds in industrial scale winemaking to infer the effects of selected early processing steps on the vinification trials of Pinot gris, Chardonnay, Vermentino and Sangiovese grapes. SEL12034A For each sample, the redox behavior showed a distinctive voltammetric signal pattern related to the processing step during winemaking, therefore being useful as a potential fingerprint for wine identification and to provide insights about the phenolic content. For instance, there was a high correlation (R2 = 0.72) between the total phenolic compounds (PhenOx) and the easily oxidizable compounds (EasyOx), the latter representing approx. 30% on average of the total phenolics. Furthermore, the maceration of red grapes was concluded after 29 days based on information driven by the phenolics pattern. As expected, during alcoholic fermentation, white wines showed a lower content of phenolic compounds than those found in red wines, with an average ratio PhenOx/EasyOx of about 4.7, 5.0 and 3.6 for Chardonnay, Pinot gris and Vermentino, respectively. The portable tool with miniaturized disposable electrodes showed interesting analytical features that can be exploited for on-site and real-time quality control for monitoring change in phenolic composition during wine processing and storage, and for tailoring winemaking practices to enhance the color stability of products.The goals of this research were determined the proximate composition, physico-chemical, techno-functional properties, the polyphenolic profile, the organic acids and sugar content and the antioxidant capacities of flours obtained from almonds skins var. comuna (ASFC) and var. fritz (ASFF) coproducts produced in Turrón industry. The chemical composition and physico-chemical properties (pH, water activity and color) were determined. The water holding, oil holding and swelling capacities were also determined, as well as the polyphenolic profile. For the antioxidant capacity, four different assays were used namely 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay (DPPH•); Ferrous ions chelating activity (FIC); Ferric reducing antioxidant power (FRAP) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging assay (ABTS•+). The flours obtained from ASFC and ASFF had a high content of dietary fiber (70.50 and 69.83 g/100 g, respectively). The polyphenolic profile, determined by High Performance Liquid Chromatography, identified 21 and 19 polyphenolic compounds in both ASFC and ASFF, being epicatechin and catechin the most abundant compounds.
Website: https://www.selleckchem.com/products/sel120.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team