Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
TxtC is an unusual bifunctional cytochrome P450 that is able to perform sequential aliphatic and aromatic hydroxylation of the diketopiperazine substrate thaxtomin D in two distinct sites to produce thaxtomin A. Though the X-ray structure of TxtC complexed with thaxtomin D revealed a binding mode for its aromatic hydroxylation, the preferential hydroxylation site is aliphatic C14. It is thus intriguing to unravel how TxtC accomplishes such two-step catalytic hydroxylation on distinct aliphatic and aromatic carbons and why the aliphatic site is preferred in the hydroxylation step. In this work, by employing molecular docking and molecular dynamics (MD) simulation, we revealed that thaxtomin D could adopt two different conformations in the TxtC active site, which were equal in energy with either the aromatic C20-H or aliphatic C14-H pointing toward the active Cpd I oxyferryl moiety. Further ONIOM calculations indicated that the energy barrier for the rate-limiting hydroxylation step on the aliphatic C14 site was 9.6 kcal/mol more favorable than that on the aromatic C20 site. The hydroxyl group on the monohydroxylated intermediate thaxtomin B C14 site formed hydrogen bonds with Ser280 and Thr385, which induced the l-Phe moiety to rotate around the Cβ-Cγ bond of the 4-nitrotryptophan moiety. Thus, it adopted an energetically favorable conformation with aromatic C20 adjacent to the oxyferryl moiety. In addition, the hydroxyl group induced solvent water molecules to enter the active site, which propelled thaxtomin B toward the heme plane and resulted in heme distortion. Based on this geometrical layout, the rate-limiting aromatic hydroxylation energy barrier decreased to 15.4 kcal/mol, which was comparable to that of the thaxtomin D aliphatic hydroxylation process. Our calculations indicated that heme distortion lowered the energy level of the lowest Cpd I α-vacant orbital, which promoted electron transfer in the rate-limiting thaxtomin B aromatic hydroxylation step in TxtC.For biomedical photoacoustic applications, an ongoing challenge in simultaneous volumetric imaging and spectroscopic analysis arises from ultrasonic detectors lacking high sensitivity to pressure transients over a broad spectral bandwidth. Photoacoustic impulses can be measured on the basis of the ultrafast temporal dynamics and highly sensitive response of surface plasmon polaritons to the refractive index changes. Taking advantage of the ultra-sensitive phase shift of surface plasmons caused by ultrasonic perturbations instead of the reflectivity change [as is the case for traditional surface plasmon resonance (SPR) sensors], a novel SPR sensor based on phase-shifted interrogation was developed for the broadband measurement of photoacoustically induced pressure transients with improved detection sensitivity. Specifically, by encoding the acoustically modulated phase change into time-varying interference intensity, our sensor achieved an almost five-fold sensitivity enhancement (∼98 Pa noise-equivalent pressure) compared with the reflectivity-mode SPR sensing technologies (∼470 Pa) while retaining a broadband acoustic response of ∼174 MHz. Incorporating our sensor into an optical-resolution photoacoustic microscope, we performed label-free imaging of a zebrafish eye in vivo, enabling simultaneous volumetric visualization and spectrally resolved discrimination of anatomical features. This novel sensing technology has potential for advancing biomedical ultrasonic and/or photoacoustic investigations.To accelerate the commercial application of organic-inorganic hybrid perovskite solar cells (PSCs), it is necessary to develop simple and low-cost methods to prepare pinhole-free large-area perovskite films with high quality. selleck chemicals llc A one-step blade coating method is regarded as a scalable technique. It is demonstrated that with the addition of N,N'-dimethylpropyleneurea (DMPU) in an FA-dominated perovskite precursor, a large-area high-quality perovskite film can be obtained by blade coating, achieving improved photovoltaic performance, thermal stability, and storage stability. It is found that the strong interaction between DMPU and Pb2+ ions is beneficial to delay the nucleation crystallization process, increase the size of crystal grains, and improve the crystallinity of the perovskite film. Planar n-i-p solar cells introducing DMPU exhibit power conversion efficiencies of 20.20% for 0.16 cm2 devices and 17.71% for 5 × 5 cm2 modules with an aperture area of 10 cm2. In addition, the devices without encapsulation placed at 50 °C for 500 h and with a relative humidity of 20 ± 5% for 1000 h still maintain efficiencies above 80 and 90%, respectively, showing outstanding stability.Ternary chalcogenide materials have attracted significant interest in recent years because of their unique physicochemical and optoelectronic properties without relying on precious metals, rare earth metals, or toxic elements. Copper molybdenum sulfide (Cu2MoS4, CMS) nanocube is a biocompatible ternary chalcogenide nanomaterial that exhibits near-infrared (NIR) photocatalytic activity based on its low band gap and electron-phonon coupling property. Here, we study the efficacy of CMS nanocubes for dissociating neurotoxic Alzheimer's β-amyloid (Aβ) aggregates under NIR light. The accumulation of Aβ aggregates in the central nervous system is known to cause and exacerbate Alzheimer's disease (AD). However, clearance of the Aβ aggregates from the central nervous system is a considerable challenge due to their robust structure formed through self-assembly via hydrogen bonding and side-chain interactions. Our spectroscopic and microscopic analysis results have demonstrated that NIR-excited CMS nanocubes effectively disassemble Aβ fibrils by changing Aβ fibril's nanoscopic morphology, secondary structure, and primary structure. We have revealed that the toxicity of Aβ fibrils is alleviated by NIR-stimulated CMS nanocubes through in vitro analysis. Moreover, our ex vivo evaluations have suggested that the amount of Aβ plaques in AD mouse's brain decreased significantly by NIR-excited CMS nanocubes without causing any macroscopic damage to the brain tissue. Collectively, this study suggests the potential use of CMS nanocubes as a therapeutic ternary chalcogenide material to alleviate AD in the future.
Homepage: https://www.selleckchem.com/products/pt2977.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team