Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The increasing use of high magnetic fields in magnetic resonance imaging (MRI) scanners demands new contrast agents, since those used in low field instruments are not effective at high fields. In this paper, we report the synthesis of a negative MRI contrast agent consisting of HoPO4 nanoparticles (NPs). Three different sizes (27 nm, 48 nm and 80 nm) of cube-shaped NPs were obtained by homogeneous precipitation in polyol medium and then coated with poly(acrylic) acid (PAA) to obtain stable colloidal suspensions of HoPO4@PAA NPs in physiological medium (PBS). see more The transverse relaxivity (r2) of aqueous suspensions of the resulting NPs was evaluated at both 1.44 T and 9.4 T. A positive correlation between r2 values and field strength as well as between r2 values and particle size at both magnetic field strengths was found although this correlation failed for the biggest NPs at 9.4 T, likely due to certain particles aggregation inside the magnet. The highest r2 value (489.91 mM-1s-1) was found for the 48 nm NPs at 9.4 T. Toxicity studies demonstrated that the latter NPs exhibited low toxicity to living systems. Finally, in vivo studies demonstrated that HoPO4@PAA NPs could be a great platform for next-generation T2-weighted MRI contrast agents at high magnetic field.Due to the p-π conjugative effect between the nitrogen atom of the amide and the carbonyl, the amide carbonyl has much low reactivity and the Schiff base reaction between the amide and amine usually did not take place, but after the amide was polymerized, it's quite different. Herein, benzene-1,3,5-triyltris((9H-carbazol-9-yl) methanone) (HTCZ) is not able to have the Schiff base reaction with melamine. Surprisingly, after HTCZ was polymerized according to the Friedel-Crafts reaction, the resultant polymer PHTCZ-1 performed the Schiff base reaction with melamine successfully, and a kind of novel N-rich porous organic polymers, namely, PHTCZ-1-MA was successfully synthesized. Moreover, PHTCZ-1-MA owned much higher Brunauer-Emmett-Teller surface area (613 m2·g-1) and pore volume (0.57 cm3·g-1) with very high nitrogen content (42.39 wt%). The theoretical calculation showed that the positive charge of the carbonyl carbon increased by 18% after the polymerization, which greatly improved the reactivity of the carbonyl. Because of this amazing change, PHTCZ-1-MA was proven to be an excellent adsorbent for CO2 capture (180 mg·g-1 at 273 K and 1.0 bar) and mercury(II) adsorption (335 mg·g-1 at 273 K). This study makes the impossibility possible and provides a unique synthesis strategy for the fabrication of a kind of N-rich porous organic polymers.Graphitic carbon nitride (g-C3N4) as a novel photocatalyst with great potentials has been extensively employed in solar-driven energy conversion. Herein, the novel in situ g-C3N4 p-n homojunction photocatalyst with nitrogen vacancies (NV-g-C3N4) is successfully fabricated via hydrothermal synthesis followed by two-step calcination. The in situ NV-g-C3N4 homojunction can be employed as an effective photocatalyst for hydrogen generation through water splitting under visible light, and the optimum rate constant of 3259.1 μmol.g-1.h-1 is achieved, which is 8.7 times as high as that of pristine g-C3N4. Moreover, the markedly increased photocatalytic performance is ascribed to the enhanced light utilization, large specific surface area and unique nitrogen-vacated p-n homojunction structure, which provides more active sites and improves the separation of photo-excited electron-hole pairs. Besides, the underlying mechanism for efficient charge transportation and separation is also proposed. This work demonstrates that the remodeling of g-C3N4 p-n homojunction with nitrogen vacancies is a feasible way as highly efficient photocatalysts and might inspire some new strategies for energy and environmental applications.The unique capability of fullerene (C60) to absorb light and generate reactive oxygen species (ROS) has been extensively studied for photosensitized water treatment and cancer therapy. Various material synthesis strategies have been proposed in parallel to overcome its intrinsic hydrophobicity and to enhance availability in water and physiological media. We present here a strikingly simple approach to make C60 available to these applications by hand-grinding dry C60 powder with nanodiamond (ND) using a mortar and pestle. The resulting ND-C60 composite was found to form a stable aqueous colloidal suspension and efficiently drive photosensitized production of ROS under visible light illumination. ND-C60 rapidly adsorbed and oxidized organic contaminants by photogenerated ROS. In the experiments for photodynamic cancer therapy, ND-C60 was internalized by cancer cells and induced cell apoptosis without noticeable toxicity. Treatment of tumor-bearing mice with ND-C60 and light irradiation resulted in tumor shrinkage and prolonged survival time.
Well-defined two-dimensional colloidal crystal monolayers (CCM) have numerous applications, such as photonic crystal, sensors, and masks for colloidal lithography. Therefore, significant effort was devoted to the preparation of preparing CCM. However, the fabrication of CCM that can float in the continuous phase and readily transfer to other substrate remains an elusive challenge.
In this article a facile approach to prepare floating CCM from polymeric colloids as building blocks is reported. The key to obtain floating CCM is the selection of an appropriate solvent to release the formed CCM from the substrate. There are two steps involved in the preparation of floating CCM formation and peeling off.
First, colloids are dispersed in a solvent. Evaporation of this solvent results in the formation of a meniscus structure of the air-liquid interface between the colloids that are on the substrate. The deformation of the meniscus gives rise to capillary attraction, driving the colloids together in a dense moncontaining additional colloids sets in, resulting in the formation of CCM on the substrate. Second, the remaining bulk dispersion is replaced by an extracting solvent that wets the substrate and peels the formed CCM off. The influence of the several solvents, the substrate materials, and the types of colloids on the CCM formation are investigated systematically. The robustness of the approach facilitates the preparation of CCM. Furthermore, the floating feature of the CCM in principle makes transfer of the CCM to other substrates possible, which broadens its applications.
Homepage: https://www.selleckchem.com/products/epoxomicin-bu-4061t.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team