Notes
![]() ![]() Notes - notes.io |
Notably, PRGO-film increased the levels of Tuj1 and the expression of transcription factors specific for midbrain DA neurons, such as Pitx3, Lmx1a, and Lmx1b. Bioenergetics and mitochondrial dysfunction were evaluated by measuring oxygen consumption modified by distinct GO species and were different between powder and film for the same GO species. Our results indicate that PRGO-film was the best GO species at maintaining mitochondrial function compared to control. Finally, different GO forms, and particularly PRGO-film was also found to prevent the loss of DA cells and the decrease of the α-synuclein (α-syn) in a molecular environment where oxidative stress has been induced to model Parkinson's disease. In conclusion, PRGO-film is the most efficient graphene species at promoting DA differentiation and preventing DA cell loss, thus becoming a suitable scaffold to test new drugs or develop constructs for Parkinson's disease cell replacement therapy.Electroencephalograph (EEG) plays a significant role in the diagnostics process of epilepsy, but the detection rate is unsatisfactory when the length of interictal EEG signals is relatively short. Although the deliberate attacking theories for undirected brain network based on node removal method can extract potential network features, the node removal method fails to sufficiently consider the directionality of brain electrical activities. To solve the problems above, this study proposes a feature tensor-based epileptic detection method of directed brain networks. First, a directed functional brain network is constructed by calculating the transfer entropy of EEG signals between different electrodes. Second, the edge removal method is used to imitate the disruptions of brain connectivity, which may be related to the disorder of brain diseases, to obtain a sequence of residual networks. After that, topological features of these residual networks are extracted based on graph theory for constructing a five-way feature tensor. To exploit the inherent interactions among multiple modes of the feature tensor, this study uses the Tucker decomposition method to get a core tensor which is finally reshaped into a vector and input into the support vectors machine (SVM) classifier. Experiment results suggest that the proposed method has better epileptic screening performance for short-term interictal EEG data.Perceptual learning, the improved sensitivity via repetitive practice, is a universal phenomenon in vision and its neural mechanisms remain controversial. A central question is which stage of processing is changed after training. To answer this question, we measured the contrast response functions and electroencephalography (EEG) before and after ten daily sessions of contrast detection training. Behavioral results showed that training substantially improved visual acuity and contrast sensitivity. The learning effect was significant at the trained condition and partially transferred to control conditions. Event-related potential (ERP) results showed that training reduced the latency in both early and late ERPs at the trained condition. Specifically, contrast-gain-related changes were observed in the latency of P1, N1-P2 complex, and N2, which reflects neural changes across the early, middle, and high-level sensory stages. Meanwhile, response-gain-related changes were found in the latency of N2, which indicates stimulus-independent effect in higher-level stages. In sum, our findings indicate that learning leads to changes across different processing stages and the extent of learning and transfer may depend on the specific stage of information processing.As the global population ages, the prevalence of Alzheimer's disease (AD), the most common form of dementia, is also increasing. At present, there are no widely recognized drugs able to ameliorate the cognitive dysfunction caused by AD. The failure of several promising clinical trials in recent years has highlighted the urgent need for novel strategies to both prevent and treat AD. Notably, a growing body of literature supports the efficacy of acupuncture for AD. In this review, we summarize the previously reported mechanisms of acupuncture's beneficial effects in AD, including the ability of acupuncture to modulate Aβ metabolism, tau phosphorylation, neurotransmitters, neurogenesis, synapse and neuron function, autophagy, neuronal apoptosis, neuroinflammation, cerebral glucose metabolism, and brain responses. Taken together, these findings suggest that acupuncture provides therapeutic effects for AD.
Acute sleep deprivation (SD) seriously affects cognitive functions, such as attention, memory, and response inhibition. Previous neuroimaging studies have demonstrated a close relationship between the functional activities of the precuneus (PC) and the function of alert attention. However, the specific effect of the PC on attention decline after acute SD has not been elucidated. ABT-199 supplier In this study, we used resting-state functional magnetic resonance imaging (fMRI) to study the relationship between the changes of the PC functional connectivity and alertness decline after total SD.
Thirty healthy, right-handed adult men participated in the experiment. Alert attention and functional connectivity were assessed by the Psychomotor Vigilance Test and a resting-state fMRI scan before and after total SD. The region of interest to region of interest ("ROI-to-ROI") correlation was employed to analyze the relationship between the PC and other brain regions after acute SD.
Participants showed decreased alert attention after total SD. In addition, SD induced decreased functional connectivity between the right PC and the right middle frontal gyrus (MFG). Moreover, there was a significant correlation between the decreased PC functional connectivity and alertness decline after total SD.
Our findings suggest that the interruption of the connection between the right PC and the right MFG is related to the observed decline in alert attention after acute SD. These results provide evidence further elucidating the cognitive impairment model of SD.
Our findings suggest that the interruption of the connection between the right PC and the right MFG is related to the observed decline in alert attention after acute SD. These results provide evidence further elucidating the cognitive impairment model of SD.
Read More: https://www.selleckchem.com/products/abt-199.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team