Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
These findings improve the understanding of RRD pathogenesis, identify novel targets for treatment of this ophthalmic disease, and possibly affect the prognosis of eyes treated or operated upon due to RRD.The textile industry has a great role in the improvement of any country's economy. Moreover, the ready-made garments need different coloured high yarn quality, so yarn should be rewinded on plastic cones for dyeing. However, manufacturers are facing the problem of tension variation during soft winding process that mainly affects the yarn quality. Consequently, to overcome the tension variation drawbacks, the attainment of constant optimal tension values is required in order to (1) Increase the winding speed while maintaining the yarn quality, (2) Improve the dyeing quality, and (3) Reduce the water consumption during the dyeing process. In this paper, a proposed yarn tension control technique is introduced to upgrade the soft winding machine, thus maintain the yarn quality and improve the manufacturing capacity. selleck chemical The proposed technique has been tested on Polyester yarn samples classified as; fine, medium and coarse yarn counts, to cover most yarn sizes used in the industry. Arduino Mega 2560 controller is utilized to implement the proposed tension control. The results are compared to the conventional system to advocate the effectiveness and capability of the proposed technique in overcoming the trade-off between tension control and machine speed that occurs in conventional system using variable tension levels.Ultrasonic imaging is a widely used tool for detection, localisation and characterisation of material inhomogeneities with important applications in many fields. This task is particularly challenging when imaging in a complex medium, where the ultrasonic wave is scattered by the material microstructure, preventing detection and characterisation of weak targets. Fundamentally, the maximum information that can be experimentally obtained from each material region consists of a set of reflected signals for different incident waves. However, these data are not directly accessible from the raw measurements, which represent a superposition of reflections from all scatterers in the medium. Here we show, that a complete set of transmitter-receiver data encodes sufficient information in order to achieve full spatio-temporal separation of transmitter-receiver data, corresponding to different local scattering areas. We show that access to the local scattering data can provide valuable benefits for many applications. More importantly, this technique enables fundamentally new approaches, exploiting the angular distribution of the scattering amplitude and phase of each local scattering region. Here we demonstrate how the local scattering directivity can be used to build the local scattering image, releasing the full potential and richness of the transmit-receive data. As a proof of concept, we demonstrate the detection of small inclusions in various highly scattering materials using numerical and experimental examples. The described principles are very general and can be applied to any research field where the phased array technology is employed.Cell cycle progression can be studied with computational models that allow to describe and predict its perturbation by agents as ionizing radiation or drugs. Such models can then be integrated in tools for pre-clinical/clinical use, e.g. to optimize kinetically-based administration protocols of radiation therapy and chemotherapy. We present a deterministic compartmental model, specifically reproducing how cells that survive radiation exposure are distributed in the cell cycle as a function of dose and time after exposure. Model compartments represent the four cell-cycle phases, as a function of DNA content and time. A system of differential equations, whose parameters represent transition rates, division rate and DNA synthesis rate, describes the temporal evolution. Initial model inputs are data from unexposed cells in exponential growth. Perturbation is implemented as an alteration of model parameters that allows to best reproduce cell-cycle profiles post-irradiation. The model is validated with dedicated in vitro measurements on human lung fibroblasts (IMR90). Cells were irradiated with 2 and 5 Gy with a Varian 6 MV Clinac at IRCCS Maugeri. Flow cytometry analysis was performed at the RadBioPhys Laboratory (University of Pavia), obtaining cell percentages in each of the four phases in all studied conditions up to 72 h post-irradiation. Cells show early [Formula see text]-phase block (increasing in duration as dose increases) and later [Formula see text]-phase accumulation. For each condition, we identified the best sets of model parameters that lead to a good agreement between model and experimental data, varying transition rates from [Formula see text]- to S- and from [Formula see text]- to M-phase. This work offers a proof-of-concept validation of the new computational tool, opening to its future development and, in perspective, to its integration in a wider framework for clinical use.Multimode optical switch is a key component of mode division multiplexing in modern high-speed optical signal processing. In this paper, we introduce for the first time a novel 2 × 2 multimode switch design and demonstrate in the proof-of-concept. The device composes of four Y-multijunctions and 2 × 2 multimode interference coupler using silicon-on-insulator material with four controllable phase shifters. The shifters operate using thermo-optic effects utilizing Ti heaters enabling simultaneous switching of the optical signal between the output ports on four quasi-transverse electric modes with the electric power consumption is in order of 22.5 mW and the switching time is 5.4 µs. The multimode switch exhibits a low insertion loss and a low crosstalk below - 3 dB and - 19 dB, respectively, in 50 nm bandwidth in the third telecom window from 1525 to 1575 nm. With a compact footprint of 10 µm × 960 µm, this device exhibits a relatively large width tolerance of ± 20 nm and a height tolerance of ± 10 nm. Furthermore, the conceptual principle of the proposed multimode switch can be reconfigurable and scalable in multifunctional on-chip mode-division multiplexing optical interconnects.
My Website: https://www.selleckchem.com/products/mptp-hydrochloride.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team