Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The controllable B-H bond activation of carboranes has long been a compelling challenge. However, as the symmetry of para-carborane places the same charge on all of its ten boron atoms, controlling the regiochemistry of B-H bond activation in these molecules has remained out of reach ever since their discovery. Herein, we describe how to use steric effects to achieve a regioselective process for B-H activation of para-carborane. selleck inhibitor In this strategy, B(2,8)-H or B(2,7)-H activation patterns were achieved by taking advantage of the π-π interactions between pyridine ligands. Interestingly, by employing host-guest interactions in metallacage compounds, B(2,8)-H bond activation could be avoided and exclusive B(2,9)-H bond activation can be achieved. Steric hindrance was also found to be beneficial for regioselective B(2,8)-H bond activation in metallacage species. In this work, we demonstrate that steric effects can be a promising driving force for controllable activation of the B-H bonds of carboranes and open new opportunities in this field.A facile spray pyrolysis method is introduced to construct the hollow CeO2-Al2O3 spheres with atomically dispersed Fe. Only nitrates and ethanol were involved during the one-step preparation process using the ultrasound spray pyrolysis approach. Detailed explorations demonstrated that differences in the pyrolysis temperature of the precursors and heat transfer are crucial to the formation of the hollow nanostructure. In addition, iron species were in situ atomically dispersed on the as-formed CeO2-Al2O3 hollow spheres via this strategy, which demonstrated promising potential in transferring syn-gas to valuable gasoline products.The lithium-sulfur (Li-S) battery is an ideal electrochemical energy storage system owing to the high theoretical energy density and acceptable cost of finance and the environment. However, some disadvantages, including low electrical conductivity, poor sulfur utilization, and rapid capacity fading, obstruct its practical application. In this work, 3D carbon foam from a melamine resin is synthesized via high-temperature calcination. Carbon nanotubes (CNTs) and MnO2 are utilized to tailor the properties of the 3D cathode collector in the liquid Li2S6-containing Li-S battery without additional conductive agents, binders, and aluminum foil. Herein, the decorated MnO2 on the carbon fiber foam prolongs the lifespan of the Li-S battery, and adding CNTs is beneficial to enhance the capacity and cyclic performance of the Li-S battery under high sulfur loading. The Li-S battery with a sulfur loading of 3 mg cm-2 possesses a reversible capacity of 437.9 mA h g-1 after 400 cycles at 0.1 C. The capacity could be maintained at 568 mA h g-1 at 0.1 C after 80 cycles when the sulfur loading increases to 6 mg cm-2.Atomically thin vanadium diselenide (VSe2) is a two-dimensional transition metal dichalcogenide exhibiting attractive properties due to its metallic 1T phase. With the recent development of methods to manufacture high-quality monolayer VSe2 on van der Waals materials, the outstanding properties of VSe2-based heterostructures have been widely studied for diverse applications. Dimensional reduction and interlayer coupling with a van der Waals substrate lead to its distinguishable characteristics from its bulk counterparts. However, only a few fundamental studies have investigated the interlayer coupling effects and hot electron transfer dynamics in VSe2 heterostructures. In this work, we reveal ultrafast and efficient interlayer hot electron transfer and interlayer coupling effects in VSe2/graphene heterostructures. Femtosecond time-resolved reflectivity measurements showed that hot electrons in VSe2 were transferred to graphene within a 100 fs time scale with high efficiency. Besides, coherent acoustic phonon dynamics indicated interlayer coupling in VSe2/graphene heterostructures and efficient thermal energy transfer to three-dimensional substrates. Our results provide valuable insights into the intriguing properties of metallic transition metal dichalcogenide heterostructures and motivate designing optoelectronic and photonic devices with tailored properties.Developing cheap and stable membrane electrode assembly for proton exchange membrane water electrolysis (PEMWE) plays critical roles in renewable energy revolution. Iridium is the commonly efficient oxygen evolution reaction catalyst. But the reserve in earth is a shortage. Herein, an ordered array electrode in feature of the defective Ir film decorated on external WOx nanorods (WOxNRs) is designed. Electrodeposition is carried out to prepare an iridium coating (∼68 nm in thickness) to guarantee the ordered morphology. This novel electrode obtained brilliant I-V performances (2.2 A [email protected] V) and 1030 h stability (0.5 mA cm-2) with a reduced loading of 0.14 mgIr cm-2. The uniform dispersion Ir catalyst on the WOx substrate benefits to enhance Ir mass activity and improve the poor conductivity originating from WOx. Compared with that of sprayed electrode, the threshold current density of mass transport polarization region can be expande to at least 3.0 A cm-2 for ordered structure electrode attributed to the abundant water storage bulk. This novel Ir@WOxNRs electrode occupies a huge potential to defuse the cost and durability issues confronting with the PEMWE.Insulation materials with excellent dielectrics-vacuum interface breakdown strength are irreplaceable in equipment such as particle accelerators, fusion ignition, and related aerospace devices. In this article, the segment structure of a typical insulation polymer, polystyrene, has been modified by introducing divinylbenzene to form cross-linking junctures and adjust the cross-linking density. The influence of cross-linking on its electron absorb-emit feature and further on the vacuum pulsed flashover characteristics has been systematically studied. A series of broadband dielectric spectroscopy (BDS) and thermally stimulated current (TSC) experiments indicate that this cross-linking network inhibits the movement of the polar segments, leading to a drastic change in the charge-trapping behavior of dielectric surface layer materials. The trapping charge density is increased, and the trapping energy is transferred to deeper-level regions. These lead to the observed suppression of secondary electron emission (SEE) of highly cross-linked polystyrenes exposed in vacuum.
Read More: https://www.selleckchem.com/mTOR.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team