Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Huanglongbing (HLB), formerly known as citrus greening disease, is one of the most devastating bacterial diseases in citrus worldwide. HLB is caused by 'Candidatus Liberibacter asiaticus' bacterium and transmitted by Diaphorina citri. Both 'Ca. L. asiaticus' and its vector manipulate the host metabolism to fulfill their nutritional needs and/or to neutralize the host defense responses. Herein, we discuss the history of HLB and the complexity of its pathosystem as well as the geographical distribution of its pathogens and vectors. Recently, our recognition of physiological events associated with 'Ca. L. asiaticus' infection and/or D. citri-infestation has greatly improved. However, the roles of citrus metabolites in the development of HLB symptoms are still unclear. We believe that symptom development of HLB disease is a complicated process and relies on a multilayered metabolic network which is mainly regulated by phytohormones. Citrus metabolites play vital roles in the development of HLB symptoms through the modulation of carbohydrate metabolism, phytohormone homeostasis, antioxidant pathways, or via the interaction with other metabolic pathways, particularly involving amino acids, leaf pigments, and polyamines. Understanding how 'Ca. L. asiaticus' and its vector, D. citri, affect the metabolic pathways of their host is critical for developing novel, sustainable strategies for HLB management.Innate immune response is one of our primary defenses against pathogens infection, although, if dysregulated, it represents the leading cause of chronic tissue inflammation. This dualism is even more present in the central nervous system, where neuroinflammation is both important for the activation of reparatory mechanisms and, at the same time, leads to the release of detrimental factors that induce neurons loss. Key players in modulating the neuroinflammatory response are mitochondria. Indeed, they are responsible for a variety of cell mechanisms that control tissue homeostasis, such as autophagy, apoptosis, energy production, and also inflammation. Accordingly, it is widely recognized that mitochondria exert a pivotal role in the development of neurodegenerative diseases, such as multiple sclerosis, Parkinson's and Alzheimer's diseases, as well as in acute brain damage, such in ischemic stroke and epileptic seizures. In this review, we will describe the role of mitochondria molecular signaling in regulating neuroinflammation in central nervous system (CNS) diseases, by focusing on pattern recognition receptors (PRRs) signaling, reactive oxygen species (ROS) production, and mitophagy, giving a hint on the possible therapeutic approaches targeting mitochondrial pathways involved in inflammation.RNA isolated from fixed and paraffin-embedded tissues is widely used in biomedical research and molecular pathology for diagnosis. In the present study, we have set-up a method based on high performance liquid chromatography (HPLC) to investigate the effects of different fixatives on RNA. By the application of the presented method, which is based on the Nuclease S1 enzymatic digestion of RNA extracts followed by a HPLC analysis, it is possible to quantify the unmodified nucleotide monophosphates (NMPs) in the mixture and recognize their hydroxymethyl derivatives as well as other un-canonical RNA moieties. The results obtained from a set of mouse livers fixed/embedded with different protocols as well from a set of clinical samples aged 0 to 30 years-old show that alcohol-based fixatives do not induce chemical modification of the nucleic acid under ISO standard recommendations and confirm that pre-analytical conditions play a major role in RNA preservation.Insects have close symbiotic relationships with several microbes, which extends the limited metabolic networks of most insects. Using symbiotic microorganisms for the biological control of pests and insect-borne diseases has become a promising direction. Blattella germanica (L.) (Blattaria Blattidae) is a public health pest worldwide, which is difficult to control because of its strong reproductive ability, adaptability, and resistance to insecticides. In this paper, the diverse biological functions (nutrition, reproductive regulation, insecticide resistance, defense, and behavior) of symbionts were reviewed, and new biological control strategies on the basis of insect-symbiont interaction were proposed. We highlight new directions in B. germanica control, such as suppressing cockroach population using Wolbachia or paratransgenes, and combining fungal insecticides with synergistic agents to enhance insecticidal efficacy.Climate change and human activities are more and more affecting the dynamics of phytoplankton communities [...].Background and Objectives Head and Neck Squamous Cell Carcinoma (HNSCC) includes cancers from the oral cavity, larynx, and oropharynx and is the sixth-most common cancer worldwide. find more MicroRNAs are small non-coding RNAs for which altered expression has been demonstrated in pathological processes, such as cancer. The objective of our study was to evaluate the different expression profile in HNSCC subtypes and the prognostic value that one or several miRNAs may have. Materials and Methods Data from The Cancer Genome Atlas Program-Head and Neck Squamous Cell Carcinoma (TCGA-HNSCC) patients were collected. Differential expression analysis was conducted by edge R-powered TCGAbiolinks R package specific function. Enrichment analysis was developed with Diana Tool miRPath 3.0. Kaplan-Meier survival estimators were used, followed by log-rank tests to compute significance. Results A total of 127 miRNAs were identified with differential expression level in HNSCC; 48 of them were site-specific and, surprisingly, only miR-383 showed a similar deregulation in all locations studied (tonsil, mouth, floor of mouth, cheek mucosa, lip, tongue, and base of tongue). The most probable affected pathways based on miRNAs interaction levels were protein processing in endoplasmic reticulum, proteoglycans in cancer (p less then 0.01), Hippo signaling pathway (p less then 0.01), and Transforming growth factor-beta (TGF-beta) signaling pathway (p less then 0.01). The survival analysis highlighted 38 differentially expressed miRNAs as prognostic biomarkers. The miRNAs with a greater association between poor prognosis and altered expression (p less then 0.001) were miR-137, miR-125b-2, miR-26c, and miR-1304. Conclusions In this study we have determined miR-137, miR-125b-2, miR-26c, and miR-1304 as novel powerful prognosis biomarkers. Furthermore, we have depicted the miRNAs expression patterns in tumor patients compared with normal subjects using the TCGA-HNSCC cohort.
Website: https://www.selleckchem.com/products/seclidemstat.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team