Notes
![]() ![]() Notes - notes.io |
PURPOSE To investigate retinal function and visual outcomes in infants with retinal hemorrhages due to non-accidental trauma (NAT). METHODS This is a retrospective review of full-field or multifocal electroretinogram (ERG) recordings, visual acuity in log minimum angle of resolution (logMAR), clinical status, and neuroimaging. Multifocal ERGs from the central 40° were compared to corresponding fundus imaging. Visual acuity was measured by Teller cards at follow-up. ERGs were compared to controls recorded under anesthesia. RESULTS Sixteen children met inclusion criteria (14 recorded during the acute phase and 2 during long-term follow-up). During the acute phase, ERGs (n = 4 full field; n = 10 multifocal ERG) showed abnormal amplitude, latency, or both in at least one eye. Ten subjects had significantly reduced responses in both eyes, 3 of which had an ERG dominated by a negative waveform (absent b-wave or P1). The remaining six subjects had responses in one eye that were near normal (≥ 50% of controls). ERGs al ERG abnormalities. Retinal function can be preserved in areas adjacent to traumatic retinoschisis.Neuroinflammation plays a vital role in the process of a variety of retinal ganglion cells (RGCs) degenerative diseases including traumatic optic neuropathy (TON). Retinal microglial activation is believed as a harbinger of TON, and robust microglial activation can aggravate trauma-induced RGCs degeneration, which ultimately leads to RGCs loss. Toll like receptor 4 (TLR4)-triggered inflammation is of great importance in retinal inflammatory response after optic nerve injury. CD11b on macrophage and brain microglia can inhibit TLR4-triggered inflammation. However, the functional role of CD11b in retinal microglia is not well understood. Here, using an optic nerve crush model and CD11b gene deficient mice, we found that CD11b protein expression was mainly on retinal microglia, significantly increased after optic nerve injury, and still maintained at a high level till at least 28 days post crush. Compared with wild type mice, following acute optic nerve injury, CD11b deficient retinae exhibited more exacerbated microglial activation, accelerated RGCs degeneration, less growth associated protein-43 expression, as well as more proinflammatory cytokines such as interleukin-6 and tumor necrosis factor α while less anti-inflammatory factors such as arginase-1 and interleukin-10 production. We conclude that CD11b is essential in regulating retinal microglial activation and neuroinflammatory responses after acute optic nerve injury, which is critical for subsequent RGCs degeneration and loss.We examine the anxiety-like behaviors in rats with bile duct ligation (BDL), as well as its relationship with the expression of JNK3 and P38 MAPKs in rat hippocampus. Male Wistar rats undergo either sham operation or BDL as a rat model of cirrhotic HE. The anxiety-like behaviors are determined using a light/dark box test two hours befor the surgery on day 1 and on days 7, 14, 21 and 28 of BDL. The gene and protein expression levels of JNK3 and p38 in the hippocampus were examined respectively with qPCR and western blotting methods on day 28 of BDL. The results revealed that anxiety was increased in the cirrhotic HE model rats during 28 days of BDL. The molecular data indicated that the gene expression of Jnk3 and protein levels of JNK3, as well as phospho-JNK3, significantly increased in the hippocampus of the cirrhotic HE model rats compared to the sham control group. However, the results revealed no significant changes in the gene expression and the protein levels of p38 as well as phospho-p38 in the hippocampus of the cirrhotic HE model rats compared to the sham control group. We conclude that the increases in the expression and activation of JNK3 MAPK in the hippocampus may underlie, at least partly, the anxiety-like behaviors in rats with cirrhotic HE.The Arabidopsis LSH1 and Oryza G1 (ALOG) protein is a family of plant-specific transcription factors that regulate reproductive growth in angiosperms. Despite their importance in plant development, little research has been conducted on ALOG proteins in basal land plants and the processes involved in their evolution remain largely unknown. Here, we studied the molecular evolution of ALOG family proteins. We found that ALOG proteins are absent in green algae but exist in all land plants analyzed as well as in some Charophycean algae, closest relatives of land plants. selleck chemicals llc Multiple sequence alignments identified the high sequence conservation of ALOG domains in divergent plant lineages. Phylogenetic analyses also identified a distinct clade of ALOG protein member of lycophytes and bryophytes, including two of Marchantia polymorpha LATERAL ORGAN SUPPRESOR (MpLOS1 and MpLOS2) with a long branch length in MpLOS2. Consistent with this, the function of MpLOS1 was replaceable by Phycomitrella patens ALOG proteins, whereas MpLOS2 failed to replace the molecular function of MpLOS1. Moreover, the rice ALOG proteins, OsTAW1 and OsG1, were not able to replace the molecular function of MpLOS1 although we previously found that the function of OsG1 was replaceable by MpLOS1. Altogether, these findings suggest that ALOG proteins emerged before the evolution of land plants and that they exhibit functional conservation and diversification during the evolution of land plants. The finding that MpLOS1 is able to complement rice ALOG mutants but not vice versa also suggest the existence of conserved and the partly divergent functions of ALOG proteins in bryophytes and angiosperms.The kinetics of excited-state energy migration were investigated by femtosecond transient absorption in the isolated Photosystem I-Light-Harvesting Complex I (PSI-LHCI) supercomplex and in the isolated PSI core complex of spinach under conditions in which the terminal electron donor P700 is chemically pre-oxidised. It is shown that, under these conditions, the relaxation of the excited state is characterised by lifetimes of about 0.4 ps, 4.5 ps, 15 ps, 35 ps and 65 ps in PSI-LHCI and 0.15 ps, 0.3 ps, 6 ps and 16 ps in the PSI core complex. Compartmental spectral-kinetic modelling indicates that the most likely mechanism to explain the absence of long-lived (ns) excited states is the photochemical population of a radical pair state, which cannot be further stabilised and decays non-radiatively to the ground state with time constants in the order of 6-8 ps.
Here's my website: https://www.selleckchem.com/pharmacological_epigenetics.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team