NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Proteins Neighbors and Closeness Proteomics.
The purpose of the study was to determine the norms and intentions of nurses towards the clinical use of herbal medicine.

Information on nurses' demographics, norms and intentions was gathered through individual face-to-face interviews. Interviews were analysed using the process of content analysis.

Beliefs of the nurses and motivational factors formed their norms. The nurses believed herbal medicine was God-given and was used by their ancestors with good outcomes. Some were self-motivated to serve herbal medicine while others counted on patient's recovery upon the use of herbal medicine to motivate them. Positive and negative intentions were discovered; thus, preparedness and unpreparedness to serve herbal medicine in the future.

Though some nurses believe herbal medicine is God-given, used by their ancestors and motivated to serve, others were unwilling because of inadequate training. this website Training of professional nurses on herbal medicine may improve their negative intentions.
Though some nurses believe herbal medicine is God-given, used by their ancestors and motivated to serve, others were unwilling because of inadequate training. Training of professional nurses on herbal medicine may improve their negative intentions.Si-carbon composites have been considered as next generation lithium-ion battery anodes, with a view to sufficiently exerting the respective superiorities of high specific capacity of Si as well as excellent mechanical flexibility and electrical conductivity of carbon. However, direct blending of carbon with Si cannot obtain a synergy composite, resulting in inferior cycle properties during charge-discharge due to huge volume changes and deficient electron-conducting channels from the unavoidably aggregated Si. Herein, the composition of carbon fibers (CNFs) with Si nanoparticles (SiNPs) has been performed through UV-ozone surface modification followed by electrostatic self-assembly. It is found that solvent-free UV-ozone exposure of CNFs for 20 min successfully introduces carboxylic groups, as conventional acid treatment for 12 h. Besides UV-ozone surface modification provides an efficient and scalable route, the distribution and functionalization of CNFs can be also modified to effectively combine with amino-functionalized SiNPs. As a result, such Si-CNF composites containing 70.0 wt% SiNPs are able to exhibit excellent cycle performance with high coulombic efficiency of 74.8% at the 1st cycle and high specific discharge capacity of 1063 mAh g-1 at the 400th cycle.Alkali metal potassium is conducive to structure promotion and electronic modulation in metal oxides. Here, K species was successfully introduced into α-MnO2via in situ synthesis (Pre-K/MnO2) and hydrothermal impregnation method (Post-K/MnO2) with target to boost the low-temperature reactivity and deep destruction efficiency for toluene oxidation. Results reveal that Post-K/MnO2 possesses the highest catalytic activity with toluene (1000 ppm) totally mineralized at just 258 °C, achieving over 70 °C of temperature reduction than that of Pre-K/MnO2. K specie shows obvious charge transfer balance ability in MnO2, forming MnO6-K-MnO6 bridging bond and leading to more uniform energy of Mn-O bonds. High electron density of K+ can promote the activation of oxygen molecules, resulting in a better catalytic performance of toluene. Abundant Brønsted acid sites are beneficial for toluene adsorption and regeneration of hydroxyl on the surface, which promote the degradation of intermediates during toluene oxidation. Moreover, Post-K/MnO2 shows satisfied catalytic performance under different space velocities and initial concentrations and humid condition. Density functional theory (DFT) calculation revealed the situation of oxygen vacancy and toluene/oxygen adsorption energy in catalysts with different K doping locations. Results showed that the adsorption energy is stronger when K located in large tunnel (0.46 × 0.46 nm), and it is easier to form oxygen vacancy while K entered the small tunnel (0.33 × 0.33 nm). The present work paves new insights into the designing of efficient transition metal oxide catalyst for VOC deep purification.
It is expected that low resolution (LR) NMR diffusometry enables (more) accurate water droplet size determination for solid-fat based water-in-oil (W/O) emulsions with (sub)-micron size water droplets in comparison to liquid-oil based W/O emulsions due to hindered extra-droplet water diffusion.

W/O emulsions with a volume-weighed mean diameter of about 1µm and a solid fat content (SFC) ranging from 0% to 74% were produced. The aqueous phase contained the ionic marker tetraphenylphosphonium chloride (TPPCl). The water droplet size was estimated using LR and high resolution (HR) NMR diffusometry.

HR-NMR diffusometry showed that the diffusion behavior of water and TPPCl was different, indicating water diffusion beyond the droplet's interfacial boundaries. From a certain SFC onwards, a slower echo decay was observed for the water molecules, thus decreasing the overestimation of the water droplet size in (sub)micron W/O emulsions. For those emulsions, the solid fat matrix is believed to hinder extra-droplet al or bi-exponential by increasing the gradient pulse duration for the maximum gradient strength, which is more convenient for routine analysis compared to HR-NMR.Mature microfiltration (MF) membrane is a low-cost, effective, and promising technology to provide affordable purified water for people living in developing countries. However, the lack of disinfection ability and inherent membrane fouling problems have seriously restricted the large-scale application of conventional MF treatment system in producing safe drinking water. In this work, zwitterionic silver nanoparticles (AgNPs) with surface modification of poly(carboxybetaine acrylate-co-dopamine methacryamide) (PCBDA) copolymers were robustly immobilized onto commercial polyamide MF membrane via mussel-inspired chemistry for water disinfection. The designed microfiltration membrane, named as PCBDA@AgNPs-MF, exhibited integrated properties of high and stable payload of AgNPs, broad-spectrum anti-adhesive and antimicrobial activities, and easy removal of inactivated microbial cells from membrane surface. Ascribing to the synergetic effect of anti-adhesive and antimicrobial features brought by zwitterionic PCBDA@AgNPs, the biofilms growth on polyamide membrane surface was significantly inhibited, which showed potential access to achieve long-term biofouling resistance and maintain water flux for conventional MF membrane.
Website: https://www.selleckchem.com/
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.