Notes
![]() ![]() Notes - notes.io |
G-protein-coupled receptors (GPCRs) are integral proteins of the cell membrane and are directly involved in the regulation of many biological functions and in drug targeting. However, our knowledge of GPCRs' structure and function remains limited. The first bottleneck in GPCR studies is producing sufficient quantities of soluble, functional, and stable receptors. Currently, GPCR production largely depends on the choice of the host system and the type of detergent used to extract the GPCR from the cell membrane and stabilize the protein outside the membrane bilayer. Here, we present three protocols that we employ in our lab to produce and solubilize stable GPCRs (1) cell-free in vitro translation, (2) HEK cells, and (3) Escherichia coli. Stable receptors can be purified using immunoaffinity chromatography and gel filtration, and can be analyzed with standard biophysical techniques and biochemical assays.Microtubules, polymers of the heterodimeric protein αβ-tubulin, are indispensable for many cellular activities such as maintenance of cell shape, division, migration, and ordered vesicle transport. In vitro assays to study microtubule functions and their regulation by associated proteins require the availability of assembly-competent purified tubulin. However, tubulin is a thermolabile protein that rapidly converts into a nonpolymerizing state. For this reason, it is usually stored at -80 °C or liquid nitrogen to preserve its conformation and polymerization properties. In this chapter, we describe a method for freeze-drying of assembly-competent tubulin in the presence of nonreducing sugar trehalose, and methods enabling the evaluation of tubulin functions in rehydrated samples.Affinity chromatography is one way to measure the binding constants of a protein-ligand interaction. Here, we describe a method of measuring a binding constant using Ni-NTA resin to immobilize a His-tagged enzyme and the method of frontal analysis. While other methods of immobilization are possible, using the strong affinity interaction between His-tagged proteins and Ni-NTA supports results in a fast, easy, and gentle method of immobilization. Once the affinity support is created, frontal analysis can be used to measure the binding constant between the protein and various analytes.X-ray crystallography is the main technique for the determination of protein structures. About 85% of all protein structures known to date have been elucidated using X-ray crystallography. Selleckchem Myrcludex B Knowledge of the three-dimensional structure of proteins can be used in various applications in biotechnology, biomedicine, drug design , and basic research and as a validation tool for protein modifications and ligand binding. Moreover, the requirement for pure, homogeneous, and stable protein solutions in crystallizations makes X-ray crystallography beneficial in other fields of protein research as well. Here, we describe the technique of X-ray protein crystallography and the steps involved for a successful three-dimensional crystal structure determination.Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is largely recognized as an important tool in the analysis of many biomolecules such as proteins and peptides. The MS analysis of digested peptides to identify a protein or some of its modifications is a key step in proteomics. MALDI-MS is well suited for the peptide mass fingerprinting (PMF) technique, as well as selected fragmentation of various precursors using collisional-induced dissociation (CID) or post-source decay (PSD).In the last few years, MALDI-MS has played a significant role in food chemistry, especially in the detection of food adulterations, characterization of food allergens, and investigation of protein structural modifications induced by various industrial processes that could be an issue in terms of food quality and safety.Here, we present simple extraction protocols of allergenic proteins in food commodities such as milk, egg, hazelnut , and lupin seeds. Classic bottom-up approaches based on Sodium Dodecyl Sulphate (SDS) gel electrophoresis separation followed by in-gel digestion or direct in-solution digestion of whole samples are described. MALDI-MS and MS /MS analyses are discussed along with a comparison of data obtained by using the most widespread matrices for proteomic studies, namely, α-cyano-4-hydroxy-cinnamic acid (CHCA) and α-cyano-4-chloro-cinnamic acid (CClCA). The choice of the most suitable MALDI matrix is fundamental for high-throughput screening of putative food allergens.In monoclonal antibody (mAb) production, aggregates represent a major class of product-related impurities that needs to be removed by the downstream process. Protein A chromatography is generally less effective at removing antibody aggregates under typical conditions, and in most cases aggregate removal relies on a subsequent polishing chromatography. Here we describe a procedure for effective removal of antibody aggregates using the mixed-mode chromatography resin Capto MMC ImpRes. Clearance of aggregates was confirmed by analytical size-exclusion chromatography (SEC) and native gel electrophoresis.The bacterium Escherichia coli is still considered the first option as a microbial cell factory for recombinant protein production, and affinity chromatography is by far the preferred technique for initial purification after protein expression and cell lysis. In this chapter, we describe the methodology to express and purify recombinant proteins in E. coli tagged with the first two metal-binding proteins proposed as fusion partners. They are the small metal-binding protein SmbP and a mutant of the copper resistance protein CusF3H+. There are several advantages of using them as protein tags they prevent the formation of inclusion bodies by increasing solubility of the target proteins, they enable purification by immobilized metal-affinity chromatography using Ni(II) ions with high purity, and because of their low molecular weights, excellent final yields are obtained for the target proteins after cleavage and removal of the protein tag. Here we also describe the protocol for the production of proteins in the periplasm of E.
My Website: https://www.selleckchem.com/peptide/bulevirtide-myrcludex-b.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team