Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Drug abuse in the family is known to increase the risk of child abuse, but its impact on outcomes of hospitalizations for non-accidental trauma (NAT) has not been characterized.
We aimed to identify how frequently drug abuse in the household was documented among children with known or suspected NAT, and to correlate drug abuse in the family with hospitalization outcomes.
At our tertiary care hospital, we retrospectively queried hospital admissions of children ages 0-17 who had a Child Abuse and Neglect consultation ordered during an inpatient stay.
Case manager documentation and consult notes from the inpatient response team were used to determine suspected or confirmed presence of household substance abuse.
We identified 185 children meeting inclusion criteria (59 % <1 year; 34 % 1-5 years; 7% 6-14 years of age). Drug abuse in the family was documented in 44 cases (24 %). Among 178 children surviving to discharge, drug abuse was associated with lower likelihood of discharge home (50 % vs. 70 % among children with no documented drug abuse, p = 0.018). After discharge, we found no statistically significant differences in rehospitalizations or emergency department visits according to documentation of drug abuse in the family.
Our study addresses the role of family drug abuse in outcomes of hospitalizations for NAT. Significantly, half of cases with suspected or known drug abuse had no prior CPS involvement, and drug abuse was associated with discharge outcomes after controlling for prior CPS involvement.
Our study addresses the role of family drug abuse in outcomes of hospitalizations for NAT. Significantly, half of cases with suspected or known drug abuse had no prior CPS involvement, and drug abuse was associated with discharge outcomes after controlling for prior CPS involvement.Sulfonamides (SAs) are ubiquitous antibiotics that are increasingly detected in the aquatic environment, and may cause potential harm to the environment and humans. Indirect photodegradation has been considered to be a promising natural degradation process for antibiotics in the environment. Chromophoric dissolved organic matter (CDOM) is an important participant in the indirect photodegradation of antibiotics. Indirect photodegradation of sulfathiazole (ST) and sulfamerazine (SM) were studied in the presence of CDOM and marine factors (salinity, pH, nitrate (NO3-) and bicarbonate (HCO3-)) to simulate photodegradation of these compounds in the coastal seawater environment. The main findings are as follows. First, the indirect photodegradation rates of ST and SM in the presence of CDOM were significantly increased and followed the pseudofirst order kinetics. Second, 1O2 played a critical role in the indirect photodegradation of ST and its contribution rate was 54.2%; 3CDOM⁎ performed similarly in the case of SM with a 58.0% contribution rate. Third, CDOM was divided into four fluorescent components by excitation-emission matrix spectroscopy and parallel factor analysis (EEMs-PARAFAC), including three exogenous components and an autochthonous component. The exogenous components with high molecular weight and higher number of aromatic groups played a decisive role in the indirect photodegradation of ST and SM due to their ability to generate higher levels of reactive intermediates (RIs). Finally, seawater factors (salinity, pH, NO3- and HCO3-) influenced the indirect photodegradation of ST and SM by influencing the steady-state concentrations of RIs. This report is the first study of indirect photodegradation of ST and SM from the perspective of the CDOM components and simulated coastal waters.It is critical to establish response thresholds for fungal communities to global environmental change and assess the relationship between fungal diversity and nutrient cycling in soils. However, these have not yet been evaluated in agro-ecosystems. selleck screening library Here we report the findings of a survey across eastern China on the soil fungi and physicochemical properties in adjacent maize and rice fields. The results revealed a wider range of environmental thresholds for soil fungi in rice than maize fields. We found that the dominant fungal taxa only accounted for 0.6% of all taxa, but constituted >50% of total fungi. Based on their habitat preferences, distinct distribution maps between maize and rice fields were constructed, which indicated niche differentiation of soil fungi between dry and waterlogged soils. Rice fields showed higher fungal richness in low latitude regions, consistent with latitudinal richness patterns found in natural terrestrial ecosystems; however, no such trend was observed in maize fields. Fungal richness was positively correlated with nutrient cycling in rice soils and fungal beta diversity with nutrient cycling in maize soils. These findings provide response thresholds for fungal community change across environmental gradients, advancing our understanding of soil fungal diversity patterns in agricultural ecosystems. Differences between wetland and dryland should be taken into consideration when formulating sustainable management plans and baselines for assessments of future global change and resilience of agricultural fields.Extreme haze episodes have frequently occurred in Seoul since mid-2010s by the combined contributions of transboundary transported aerosols as well as locally emitted pollutants. In this study, we developed a novel method to estimate the contribution of long-range transport (LRT, aerosols are transported from any regions except local area near Seoul) and local pollution (LP, aerosols are originated from local area near Seoul) cases to the PM10 concentration in Seoul, Korea, using the PM10 concentration ratio between surface (PM10S) and mountaintop (PM10M) sites and the lidar-derived mixing layer height. The overall contributions of LRT and LP events to nighttime high-PM10 episodes (PM10 > 50 μg m-3) during the period of May 2008-April 2019 were estimated to be approximately 32% and 47%, respectively. The monthly contribution of LRT events to the PM10 concentration varied from approximately 18% (July) to 43% (January), whereas the contribution of LP events was estimated between 39% (March) and 69% (July); this pattern was associated with seasonal synoptic circulations.
My Website: https://www.selleckchem.com/
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team