Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
A novel material that nano zero valent iron (nZVI) loaded on biochar with stable starch stabilization (nZVI/SS/BC) was synthesized and used for the removal of hexavalent chromium [Cr(VI)] in simulated wastewater. It was indicated that as the pyrolysis temperature of rice straw increased, the removal rate of Cr(VI) by nZVI/SS/BC first increased and then decreased. nZVI/SS/BC made from biochar pyrolyzed at 600 °C (nZVI/SS/BC600) had the highest removal efficiency and was suitable for a wide pH range (pH 2.1-10.0). The results showed that 99.67% of Cr(VI) was removed by nZVI/SS/BC600, an increase of 45.93% compared to the control group, which did not add soluble starch during synthesis. The pseudo-second-order model and the Langmuir model were more in line with reaction. The maximum adsorption capacity for Cr(VI) by nZVI/SS/BC600 was 122.86 mg·g-1. The properties of the material were analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) mapping, Brunauer-Emmett-Teller (BET), Fourier-transform infrared (FTIR), and X-ray diffraction (XRD). The results showed that the nZVI particles were uniformly supported on the biochar, and the BET surface areas of nZVI/SS/BC was 40.4837 m2·g-1, an increase of 8.79 times compared with the control group. Mechanism studies showed that soluble starch reduced the formation of metal oxides, thereby improving the reducibility of the material, and co-precipitates were formed during the reaction. All results indicated that nZVI/SS/BC was a potential repair material that can effectively overcome the limitations of nZVI and achieve efficient and rapid repair of Cr(VI).In order to understand the pollution status of groundwater with geochemical evolution and appraisal of its probable public health risk due to nitrate (NO3-) and fluoride (F-), a total of 93 groundwater samples were collected during pre-monsoon (May) period from Wardha sub-basin, central India. click here By employing Piper plot, transition from Ca-HCO3 type water (recharge waters) to Na-Cl (saline water) type water through mixed Ca-Na-HCO3, mixed Ca-Mg-Cl (reverse ion exchange waters) and Ca-Cl types (leachate waters), were observed. The Geogenic processes such as silicate, dolomite, halite and carbonate weathering along with calcite precipitation and ion exchange process were identified as major controlling factors for evolution and alteration of groundwater chemistry. The Saturation index highlighted that the groundwater in the area is oversaturated with respect to the mineral calcite and dolomite, and under saturated with gypsum, fluorite and halite. The high NO3- and F- concentration overpassing the permissible limit were found in 54.8% and 18.5% of samples. The plot of F- with Na+/Ca2+, Na+/Mg2+ and F-/Cl- established fluoride bearing rock weathering is responsible for F- contamination. Based on the cluster analysis, the groundwater was grouped into Cluster-I Ca-Na-HCO3 type (61.3%) and Cluster-II Na-Ca-HCO3-Cl type (30.1%). The total hazard index (HI) based on human health risk assessment (HHRA) model for cumulative NO3- and F- toxicity through oral and dermal pathways were computed as 100%, 97.85% and 96.77% for children, female and male populations respectively. The HQ(nitrate) > 1 through ingestion pathway were in 84.95%, 68.82% and 62.37%, and HQ(fluoride) > 1 in 83.87%, 62.37% and 43.01% of the groundwater samples were recorded for children, female and male population respectively. The risk assessment study highlighted very high toxicity and severe health impact of ingestion of contaminated groundwater on public health.Acrylamide (ACR) is generated during thermal processing of carbohydrate-rich foods at high temperature and can directly enter the body through ingestion, inhalation and skin contact. The toxicity of ACR has been widely studied. The main results of these studies show that exposure to ACR can cause neurotoxicity in both animals and humans, and show reproductive toxicity and carcinogenicity in rodent animal models. However, the mechanism of toxicity of ACR has not been studied by metabolomics approaches, and the effect of ACR on autophagy remains unknown. Here, U2OS cell were treated with ACR 6 and 24 h and collected for further study. We have demonstrated that ACR inhibited autophagic flux, and increased ROS content. Accumulation of ROS resulted in increase of apoptosis rates and secretion of inflammatory factors. In addition, significant differences in metabolic profiles were observed between ACR treated and control cells according to multiple analysis models. A total of 73 key differential metabolites were identified. They were involved in multiple metabolic pathways. Among them, exposure to ACR caused glycolysis/gluconeogenesis attenuation by decreasing levels of glycolytic intermediates, reduced the rate of the TCA cycle, while elevating levels of several amino acid metabolites and lipid metabolites. In summary, our study provides useful evidence of cytotoxicity caused by ACR via metabolomics and multiple bioanalytic methods.High levels of ammonium in groundwater is a potential threat to drinking water security and ecological status. The role of dissolved organic matter (DOM) in mobilization of natural ammonium in groundwater is crucial but the intrinsic link between them has still been poorly understood. This study used high-pressure size exclusion chromatography (HPSEC) and fluorescence excitataion-emission-matrix spectra (EEMs) with parallel factor analysis (PARAFAC) to elucidate the influence of DOM characteristics in groundwater systems having contrastive ammonium levels in Dongting Plain, central Yangtze River. The results indicate that NH4+-N concentration in groundwater of western plain (0-16.75 mg/L) are much higher compared with southern plain (0-1.5 mg/L). The groundwater in western plain is in a more reductive environment and characterized by larger molecular weight (MW) of DOM and lower polydispersity (ρ), whereas DOM with relatively small molecular weight and high polydispersity is detected in the south with a more oxidative condition. The groundwater in western plain is characterized by lower fluorescence index (f450/500) and biological index (BIX), and dominated by the high molecular weight terrestrial humic-like component and larger amounts of microbial humic-like components. Protein-like is the main component in groundwater of southern plain with higher f450/500 and BIX. The ammonium concentration in groundwater correlates well with molecular weight and increases significantly with the content of high molecular weight terrestrial humic-like component, indicating that mobilization of ammonium is more closely associated with the terrestrial organic matter of high molecular weight. This study further enriches the theory on mobilization of ammonium in Quaternary alluvial-lacustrine aquifer systems and provides theoretical basis for the local water supply security.
Website: https://www.selleckchem.com/products/guggulsterone.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team