Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
A fiber-optic sensing system based on two types of ultra-weak fiber Bragg gratings (UWFBG) for simultaneous temperature and vibration sensing was proposed. Narrowband and broadband UWFBGs are alternately written into an optical fiber with equal spacing. Distributed temperature sensing is realized by demodulating the wavelength shift of the narrowband UWFBG, while distributed vibration sensing is achieved by detecting phase variation between two adjacent broadband UWFBG interference pulses. The experimental results show that the proposed hybrid UWFBG array can perform temperature and vibration sensing simultaneously. The experimentally conducted temperature measurement ranges from 20°C to 100°C, with the measurement error less than 0.1°C. Vibration signals at different temperatures can be accurately restored, and the signal-to-noise ratio (SNR) is improved by 21.1 dB compared with a normal single-mode fiber (SMF).Fourier optics is a powerful and efficient tool for solving many diffraction problems, but relies on the assumption of scalar diffraction theory and ignores the three-dimensional structure and material properties of the diffracting element. Recent experiments of sub-scale starshade external occulters revealed that the inclusion of these physical properties is necessary to explain the observed diffraction at 10-10 of the incident light intensity. Here, we present a methodology for implementing non-scalar diffraction while maintaining the efficiency and ease of standard Fourier optics techniques. Our methodology is based on that of Braunbek, in which the Kirchhoff boundary values are replaced with the exact field in a narrow seam surrounding the edge of the diffracting element. In this paper, we derive the diffraction equations used to implement non-scalar diffraction and outline the computational implementation used to solve those equations. We also provide experimental results that demonstrate our model can replicate the observational signatures of non-scalar diffraction in sub-scale starshades, in effect validating our model to better than 10-10 in relative intensity. We believe this method to be an efficient tool for including additional physics to the models of coronagraphs and other optical systems in which a full electromagnetic solution is intractable.With an ever-increasing interest in secure and reliable free-space optical communication, upconversion detectors enabled through nonlinear optical processes are an attractive route to transmitting data as a mid-infrared signal. This spectral region is known to have a higher transmissivity through the atmosphere. In this work, we present an upconversion scheme for detection in the silicon absorption band using magnesium-oxide doped periodically poled lithium niobate to generate 21 mW of a 3.4 µm signal from commercial laser sources using a difference frequency generation process. Following a further nonlinear frequency conversion, via sum-frequency generation, the resulting signal at 809 nm is detected. We achieve >50 µW of signal and bit error rates of 10-7 from a single-pass nonlinear conversion for both the transmitter and receiver systems without the need for additional optical amplifiers at the receiving end. The error rates due to potentially reduced laser powers at the receiver end are investigated and laser noise transfer through our system is discussed.Dark-field microscopy is a powerful technique for enhancing the imaging resolution and contrast of small unstained samples. In this study, we report a method based on end-to-end convolutional neural network to reconstruct high-resolution dark-field images from low-resolution bright-field images. The relation between bright- and dark-field which was difficult to deduce theoretically can be obtained by training the corresponding network. The training data, namely the matched bright- and dark-field images of the same object view, are simultaneously obtained by a special designed multiplexed image system. Since the image registration work which is the key step in data preparation is not needed, the manual error can be largely avoided. After training, a high-resolution numerical dark-field image is generated from a conventional bright-field image as the input of this network. We validated the method by the resolution test target and quantitative analysis of the reconstructed numerical dark-field images of biological tissues. The experimental results show that the proposed learning-based method can realize the conversion from bright-field image to dark-field image, so that can efficiently achieve high-resolution numerical dark-field imaging. The proposed network is universal for different kinds of samples. In addition, we also verify that the proposed method has good anti-noise performance and is not affected by the unstable factors caused by experiment setup.A custom fibre laser designed as an excitation source for biomedical photoacoustic tomography has been developed. It is based on a custom-drawn large core diameter fibre (200 µm) that enables high pulse energies (∼10 mJ) to be achieved. selleck chemicals llc The system can provide variable pulse durations (10 - 500 ns) and pulse repetition frequencies (100 Hz - 1 kHz), as well as arbitrary pulse bursts according to specific user defined sequences. The system is also compact and does not require external water cooling. This, along with the flexibility in the temporal characteristics of its output that it offers, will aid the translation of photoacoustic imaging to practical application in medicine and biology.The development of new quantum light sources requires robust and convenient methods of characterizing their joint spectral properties. Measuring the joint spectral intensity between a photon pair ignores any correlations in spectral phase which may be responsible for degrading the quality of quantum interference. A fully phase-sensitive characterization tends to require significantly more experimental complexity. Here, we investigate the sensitivity of the frequency-resolved double-pair emission to spectral phase correlations, in particular to the presence of a simple form of correlated phase which can be generated by a chirped pump laser pulse. We observe interference fringes in the four photon coincidences which depend on the frequencies of all four photons, with a period which depends on the strength of their correlation. We also show that phase correlations in the JSA induce spectral intensity correlations between two signal photons, even when the corresponding idler photons are not detected, and link this correlation pattern to the purity of a single signal photon.
Here's my website: https://www.selleckchem.com/products/AZD0530.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team