Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Thus showing the distinction, novelty and huge advantage of the proposed method as an asymptotic alternative, in providing generalized or solitary wave solution to a wider class of differential equations.Water is an essential component of all living things on earth and the contamination of water by heavy metals can cause detrimental health effects. This study aimed to determine the health risk posed by trace elements (Fe, Zn, Cu, Mn, Ni, Cr, Cd, Co, Pb, and As) present in the drinking water supplies of Gullele and Akaki-Kality Sub-Cities, upstream and downstream parts of Addis Ababa, respectively. The concentrations of the potentially toxic trace elements in the water samples were determined using inductively coupled plasma optical emission spectroscopy (ICP-OES). The highest concentration of the heavy metals was observed for Iron. Cadmium and cobalt were not detected in any of the tap water samples. Samples from Gullele contained higher levels of Fe and Mn, 220.3 ± 0.17 and 19.78 ± 0.08 μg/L, respectively compared to Akaki-Kality, 38.87 ± 0.14 and 2.08 ± 0.01 μg/L, respectively. Conversely, tap water from Akaki-Kality contained significantly higher levels of As than that from Gullele. Additionally, Cr and Ni were detected only in samples from Akaki-Kality, which might be due to the various industries in the area. The highest incremental lifetime cancer risk was found for arsenic, with values for children and adults in Akaki-Kality 2.50 × 10-4 and 4.50 × 10-4, respectively. Likewise, in Gullele Sub-City, it was 5.00 × 10-5 and 1.00 × 10-4 for adults and children, respectively. The results indicate that carcinogenic risk occurrence is probable from As in both studied areas.Nitrobenzene oxidation was executed utilizing an innovative method, in which Ag/Pb3O4 semiconductors irradiated by visible light were used for activation of persulfate into sulfate radicals. Batch mode experiments were accomplished to elucidate the effect of persulfate concentrations and Ag/Pb3O4 dosages on the nitrobenzene oxidation behaviors. The physicochemical properties of original and reacted Ag/Pb3O4 were illustrated by X-ray diffraction analyses, UV-Vis diffuse reflectance spectra, FE-SEM images, EDS analyses, photoluminescence spectra and X-ray photoelectron spectra, respectively. The main oxidant was hypothesized to be sulfate radicals, induced from persulfate caused by photocatalysis of Ag/Pb3O4. It was clearly reflected on the scavenging experiments with addition of benzene, ethanol and methanol individually. As far as degradation pathways concerned, nitrobenzene was essentially transformed into hydroxycyclohexadienyl radicals, and sequentially converted to 2-nitrophenol, 3-nitrophenol or 4-nitrophenol simultaneously. Denitration of nitrophenols gave rise to synthesis of phenol, followed with generation of hydroquinone and p-benzoquinone.The study examined the impact of COVID-19 on economic growth in Nigeria Opinions and attitudes. The purpose was to ascertain respondents' perception of the effect of the COVID-19 pandemic on economic growth in Nigeria. The cross-sectional survey research design was employed and a mix-method was used in collecting the research data. Content validity index and face validity served to validate the research instrument while Cronbach alpha was used to assure its reliability. The secondary data were analysed using percentage changes while the primary data were analysed using a one-sample t-test and least-squares method. Results of the respondents' opinion indicated that the COVID-19-induced lockdown has significantly constrained economic activities and the circular flow of income. Lastly, the perceived reduction in the circular flow of income in the wake of the COVID-19 lockdown has negatively impacted on economic growth in Nigeria. The need for policymakers to take drastic measures to curtail the pandemic and forestall a recession that may be consequent upon the pandemic was suggested, among others.The unstable compound octacalcium phosphate (OCP) is one of the crystalline precursors of the apatite mineral series composed by hydroxyapatite, fluorapatite and chlorapatite. The feature of OCP to react into apatite, depending on the media conditions, has been mainly exploited for biomedical applications as bone and tooth substitute material. Recently, some important applications of OCP have been documented e.g. as electrode material for supercapacitors and as fluoride remover reagent for environmental purposes. With the aim of deepening the property of OCP to be the crystalline precursor of apatite and assessing if and how the anionic competition can influence the formation of the different apatite end-members, the OCP → apatite reaction has been here investigated placing 0.223 mmol of OCP in 50 mL aqueous solution with 0.368 mmol of dissolved fluoride, chloride, hydroxyl and carbonate anions (fluoride alone, fluoride with each of the other anions, and all the anions together) at room temperature. learn more The post-experiment analyses of solid and liquid phases, conducted by using XRD, ESEM and ICP-OES, show that fluoride is always the main anion removed from solution during the OCP transformation reaction. The precise mineralogical characterization of solid phases formed, performed using the Rietveld algorithm, shows that fluorapatite is always the main resulting apatitic phase, followed by hydroxyapatite. Taking into account the different application fields of OCP, these results could be significant in better defining the OCP → apatite reaction in aqueous solutions where different competing anions are involved.Commercial Agriculture Development is widely seen as a pathway to agriculture commercialization, poverty reduction and pro-poor growth in developing economies. Using a counterfactual approach, this study assessed the impact of the Commercial Agricultural Development Project (CADP) in Nigeria on poverty status of beneficiaries and non-beneficiaries; determine its impact on commercialization of beneficiaries and non-beneficiaries and ascertain the pro-poor impact of the Project. Data from 1199 households comprising 678 beneficiaries and 521 non-beneficiaries were used for analysis. Propensity score matching was used to select comparable observations which reduced the sample size to 1142 observations 655 beneficiaries, 487 non-beneficiaries. Data were analyzed using descriptive statistics, propensity score matching technique, Foster-Greer-Thorbecke (FGT) poverty measures, Average Treatment effect on the Treated (ATT) and Poverty equivalent growth rate (PEGR) pro-poor measure. FGT poverty indices were lower for CADP Beneficiaries than the non-beneficiaries.
Website: https://www.selleckchem.com/products/kb-0742-dihydrochloride.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team