Notes
Notes - notes.io |
Egyptian students experience varying levels of psychological disturbance during COVID-19 pandemic. This study suggests that mental health of the university students should be carefully, monitored during the crisis and the universities should provide psychological-oriented services, adapted to these circumstances to mitigate its emotional impact on the students.
Antimicrobial resistance (AMR) of Neisseria gonorrhoeae has spread worldwide. Rapid and comprehensive methods are needed to describe N. gonorrhoeae AMR profiles accurately. A method based on multiplex amplicon sequencing was developed to simultaneously sequence 13 genes related to AMR in N. gonorrhoeae directly from clinical samples.
Nine N. gonorrhoeae strains were used for the establishment and validation of the method. Eleven urethral swabs and their corresponding cultured isolates were matched as pairs to determine the accuracy of the method. Mock samples with different dilutions were prepared to determine the sensitivity of the method. Five nongonococcal Neisseria strains and 24 N. gonorrhoeae negative clinical samples were used to evaluate the cross-reactivity. Finally, the method was applied to 64 clinical samples to assess its performance.
Using Sanger sequencing as a reference method, sequences recovered from amplicon sequencing had a base accuracy of over 99.5% and the AMR sites were correctly identified. The limit of detection (LOD) was lower than 31 copies/reaction. No significant cross-reactivity was observed. Furthermore, target genes were successfully recovered from 64 clinical samples including 9 urines, demonstrating this method could be used in different types of samples. For clinical samples, the results can be obtained within a time frame of 7 h 40 min to 10 h 40 min, while for isolates, the turnaround time was approximately 2 h shorter.
This method can serve as a versatile and convenient culture-free diagnostic method with the advantages of high sensitivity and accuracy.
This method can serve as a versatile and convenient culture-free diagnostic method with the advantages of high sensitivity and accuracy.
Protein orthologous group databases are powerful tools for evolutionary analysis, functional annotation, or metabolic pathway modeling across lineages. ISRIB nmr Sequences are typically assigned to orthologous groups with alignment-based methods, such as profile hidden Markov models, which has become a computational bottleneck.
We present DeepNOG, an extremely fast and accurate, alignment-free orthology assignment method based on deep convolutional networks. We compare DeepNOG against state-of-the-art alignment-based (HMMER, DIAMOND) and alignment-free methods (DeepFam) on two orthology databases (COG, eggNOG 5). DeepNOG can be scaled to large orthology databases like eggNOG, for which it outperforms DeepFam in terms of precision and recall by large margins. While alignment-based methods still provide the most accurate assignments among the investigated methods, computing time of DeepNOG is an order of magnitude lower on CPUs. Optional GPU usage further increases throughput massively. A command-line tool enables rapid adoption by users.
Source code and packages are freely available at https//github.com/univieCUBE/deepnog. Install the platform-independent Python program with $pip install deepnog.
Supplementary material is available at Bioinformatics online.
Supplementary material is available at Bioinformatics online.
Only few pathogens that cause lower respiratory tract infections (LRTIs) can be identified due to limitations of traditional microbiological methods and the complexity of the oropharyngeal normal flora. Metagenomic next-generation sequencing (mNGS) has the potential to solve this problem.
This prospective observational study sequentially enrolled 93 patients with LRTI and 69 patients without LRTI who visited Peking University People's Hospital in 2019. Pathogens in bronchoalveolar lavage fluid (BALF) specimens were detected using mNGS (DNA and RNA) and traditional microbiological assays. Human transcriptomes were compared between LRTI and non-LRTI, bacterial and viral LRTI, and tuberculosis and nontuberculosis groups.
Among 93 patients with LRTI, 20%, 35%, and 65% of cases were detected as definite or probable pathogens by culture, all microbiological tests, and mNGS, respectively. Our in-house BALF mNGS platform had an approximately 2-working-day turnaround time and detected more viruses and fungi than the other methods. Taking the composite reference standard as a gold standard, it had a sensitivity of 66.7%, specificity of 75.4%, positive-predictive value of 78.5%, and negative-predictive value of 62.7%. LRTI-, viral LRTI-, and tuberculosis-related differentially expressed genes were respectively related to immunity responses to infection, viral transcription and response to interferon-γ pathways, and perforin 1 and T-cell receptor B variable 9.
Metagenomic DNA and RNA-seq can identify a wide range of LRTI pathogens, with improved sensitivity for viruses and fungi. Our in-host platform is likely feasible in the clinic. Host transcriptome data are expected to be useful for the diagnosis of LRTIs.
Metagenomic DNA and RNA-seq can identify a wide range of LRTI pathogens, with improved sensitivity for viruses and fungi. Our in-host platform is likely feasible in the clinic. Host transcriptome data are expected to be useful for the diagnosis of LRTIs.
Clinical practice guidelines or recommendations often require timely and regular updating as new evidence emerges, because this can alter the risk-benefit trade-off. The scientific process of developing and updating guidelines accompanied by adequate implementation can improve outcomes. To promote better management of patients receiving vancomycin therapy, we updated the guideline for the therapeutic drug monitoring (TDM) of vancomycin published in 2015.
Our updated recommendations complied with standards for developing trustworthy guidelines, including timeliness and rigor of the updating process, as well as the use of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. We also followed the methodology handbook published by the National Institute for Health and Clinical Excellence and the Spanish National Health System.
We partially updated the 2015 guideline. Apart from adults, the updated guideline also focuses on pediatric patients and neonates requiring intravenous vancomycin therapy.
My Website: https://www.selleckchem.com/products/isrib.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team