Notes
![]() ![]() Notes - notes.io |
The current study examined the concentrations of ten trace elements (TE) (nickel, chromium, cadmium, iron, zinc, manganese, aluminum, copper, selenium and lead) in the edible tissue of the Ark shell Arca noae (L. 1758) from a Mediterranean coastal lagoon, the Bizerte lagoon during 2013-2014. The analysis of several redox status biomarkers, metallothioneins (MTs), malondialdehyde (MDA), glutathione peroxidase (GPx), reduced glutathione (GSH) and acetylcholinesterase (AChE), was monitored as a response to TE bioaccumulation and environmental parameters variability. Significant differences (p less then 0.05) were observed between mean seasonal TE concentrations in A. noae soft tissue. The highest TE concentrations in A. noae soft tissues were recorded during summer, which coincided with the increase of body dry weight (BDW) and the gonad index (GI). During this season, biomarker responses were enhanced, revealing significant increases of MTs, MDA and GSH levels as well as GPx activity in A. noae tissues, while a decrease of AChE activity was observed. The levels of TE analyzed in A. noae and several parameters used to assess the potential human risk (estimated weekly intake, target hazard quotient and target hazard risk) were lower than the permissible limits for safe seafood consumption. Consequently, this shellfish can be considered safe for human consumption. This preliminary study presents prospects for the valorization of this seafood product in Tunisia's food sector. It also gives basal information for future environmental assessment studies in which A. noae could be used as early warning tools in the field of biomonitoring programs and confirms the usefulness of biomarkers to monitor the health status of aquatic organisms.17α-ethinylestradiol (EE2), the female contraceptive pill, has been detected in mediterranean coasts where seahorse populations, Hippocampus guttulatus, live. Low environmental concentrations have the potential to disrupt growth but also endocrine metabolism, and this imbalance is all the more critical in early life stage. To investigate the impact of EE2 in reared seahorses, we exposed aged 2 months and sexually undifferentiated seahorses to an environmental concentration of 21 ng/L of EE2 for a period of 30 days. EE2 exposure led to a 19% reduction in weight, but also a mortality rate of 27%. This exposure predicted demasculinization of male individuals with a late onset of secondary sexual characteristics. EE2 exposure led to an increase of the free androgen index, but significant reductions of estradiol and testosterone in males were observed. This low estrogen concentration seemed to impact the positive feedback on luteinizing hormone (LH) with a decrease in LH production. Added to this, synthetic estrogen had a negative impact on the production and the release of follicle-stimulating hormone. Contrary to all expectations, females demonstrated a significant decrease in vitellogenin, following exposure to EE2 at 21 ng/L, while no changes were detected in males. This first study on the European long-snouted seahorses confirmed the deleterious impact of the female contraceptive pill with a real impact on growth, sexual differentiation, and maturation in young immature seahorses.BACKGROUND Either a random-parameters logit (RPL) or latent class (LC) model can be used to model or explain preference heterogeneity in discrete-choice experiment (DCE) data. The former assumes continuous distribution of preferences across the sample, while the latter assumes a discrete distribution. This study compared RPL and LC models to explore preference heterogeneity when analyzing patient preferences for psoriasis treatments. METHODS Using DCE data collected from respondents with moderate-to-severe plaque psoriasis, we calculated and compared preference weights derived from RPL and LC models. We then compared how RPL and LC explain preference heterogeneity by exploring differences across subgroups defined by observed characteristics (i.e., country, age, gender, marital status, and psoriasis severity). RESULTS While RPL and LC models resulted in the same mean preference weights, different preference-heterogeneity patterns emerged from the two approaches. In both models, country of residence and self-reported disease severity could be linked to systematic differences in preferences. The RPL also identified gender and marital status, but not age, as sources of heterogeneity; the LC membership probability model indicated that age was a significant factor, but not gender or marital status. CONCLUSIONS Using data from a psoriasis patient survey to compare two widely used methods for exploring heterogeneity identified differences in results between stated-preferences subgroup analysis in the RPL model and inclusion of subgroup characteristics in the class membership probability function of the LC model. Researchers should model data using the most adaptable approach to address the initial study question.OBJECTIVES The primary objective of this study was to predict healthcare cost trajectories for patients with newly diagnosed acute myeloid leukemia (AML) receiving allogeneic hematopoietic cell transplantation (alloHCT), as a function of days since chemotherapy initiation, days relative to alloHCT, and days before death or last date of insurance eligibility (LDE). An exploratory objective examined patients with AML receiving chemotherapy only. METHODS We used Optum's de-identified Clinformatics® Data Mart Database to construct cumulative cost trajectories from chemotherapy initiation to death or LDE (through 31 December 2014) for US patients aged 20-74 years diagnosed between 1 March 2004 and 31 December 2013 (n = 187 alloHCT; n = 253 chemotherapy only). We used generalized additive modeling (GAM) to predict expected trajectories and bootstrapped confidence intervals (CIs) at user-specified intervals conditional on dates of alloHCT and death or LDE relative to chemotherapy initiation. check details RESULTS Expected costs (in 2017 values) for a hypothetical patient receiving alloHCT 60 days after chemotherapy initiation and followed for 5 years were $US572,000 (95% CI 517,000-633,000); $US119,000 (95% CI 51,000-192,000); $US102,000 (95% CI 0-285,000); $US79,000 (95% CI 0-233,000), for years 1-4, respectively, and either $US494,000 (95% CI 212,000-799,000) or $US108,000 (95% CI 0-230,000) in year 5, whether the patient died or was lost to follow-up on day 1825, respectively. CONCLUSIONS Rates of cost accrual varied over time since chemotherapy initiation, with accelerations around the time of alloHCT and death. GAM is a potentially useful approach for imputing longitudinal costs relative to treatment initiation and one or more intercurrent, clinical, or terminal events in randomized controlled trials or registries with unrecorded costs or for dynamic decision-analytic models.
Read More: https://www.selleckchem.com/products/crt-0105446.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team