Notes
![]() ![]() Notes - notes.io |
Commensal yeast from the genus Candida is part of the healthy human microbiota. selleck In some cases, Candida spp. dysbiosis can result in candidiasis, the symptoms of which may vary from mild localized rashes to severe disseminated infections. The most prevalent treatments against candidiasis involve fluconazole, itraconazole, miconazole, and caspofungin. Moreover, amphotericin B associated with prolonged azole administration is utilized to control severe cases. Currently, numerous guidelines recommend echinocandins to treat invasive candidiasis. However, resistance to these antifungal drugs has increased dramatically over recent years. Considering this situation, new therapeutic alternatives should be studied to control candidiasis, which has become a major medical concern. Limonene belongs to the group of terpene molecules, known for their pharmacological properties. In this study, we evaluated in vitro the limonene concentration capable of inhibiting the growth of yeast from the genus Candida susceptible or resistant to antifungal drugs and its capacity to induce fungal damage. In addition, intravaginal fungal infection assays using a murine model infected by Candida albicans were carried out and the fungal burden, histopathology, and scanning electron microscopy were evaluated. All of our results suggest that limonene may play a protective role against the infection process by yeast from the genus Candida.Conventional petrochemical plastics have become a serious environmental problem. Its unbridled use, especially in non-durable goods, has generated an accumulation of waste that is difficult to measure, threatening aquatic and terrestrial ecosystems. The replacement of these plastics with cleaner alternatives, such as polyhydroxyalkanoates (PHA), can only be achieved by cost reductions in the production of microbial bioplastics, in order to compete with the very low costs of fossil fuel plastics. The biggest costs are carbon sources and nutrients, which can be appeased with the use of photosynthetic organisms, such as cyanobacteria, that have a minimum requirement for nutrients, and also using agro-industrial waste, such as the livestock industry, which in turn benefits from the by-products of PHA biotechnological production, for example pigments and nutrients. Circular economy can help solve the current problems in the search for a sustainable production of bioplastic reducing production costs, reusing waste, mitigating CO2, promoting bioremediation and making better use of cyanobacteria metabolites in different industries.Mesenchymal stromal cells (MSC) derived from human umbilical cord Wharton's jelly (WJ) have a wide therapeutic potential in cell therapy and tissue engineering because of their multipotential capacity, which can be reinforced through gene therapy in order to modulate specific responses. However, reported methodologies to transfect WJ-MSC using cationic polymers are scarce. Here, WJ-MSC were transfected using 25 kDa branched- polyethylenimine (PEI) and a DNA plasmid encoding GFP. PEI/plasmid complexes were characterized to establish the best transfection efficiencies with lowest toxicity. Expression of MSC-related cell surface markers was evaluated. Likewise, immunomodulatory activity and multipotential capacity of transfected WJ-MSC were assessed by CD2/CD3/CD28-activated peripheral blood mononuclear cells (PBMC) cocultures and osteogenic and adipogenic differentiation assays, respectively. An association between cell number, PEI and DNA content, and transfection efficiency was observed. The highest transfection efficiency (15.3 ± 8.6%) at the lowest toxicity was achieved using 2 ng/μL DNA and 3.6 ng/μL PEI with 45,000 WJ-MSC in a 24-well plate format (200 μL). Under these conditions, there was no significant difference between the expression of MSC-identity markers, inhibitory effect on CD3+ T lymphocytes proliferation and osteogenic/adipogenic differentiation ability of transfected WJ-MSC, as compared with non-transfected cells. These results suggest that the functional properties of WJ-MSC were not altered after optimized transfection with PEI.The current study aims to verify the effects of three specific warm-ups on squat and bench press resistance training. Forty resistance-trained males (19-30 years) performed 3 × 6 repetitions with 80% of maximal dynamic strength (designated as training load) after one of the following warm-ups (48 h between) (i) 2 × 6 repetitions with 40% and 80% of the training load (WU), (ii) 6 × 80% of training load (WU80), or (iii) 6 × 40% of the training load (WU40). Mean propulsive velocity (MPV), velocity loss (VL), peak velocity (PV), time to achieve PV, power, work, heart rates, and ratings of perceived exertion were analyzed. In squat exercises, higher MPV were found in WU80 compared with WU40 (2nd set 0.69 ± 0.09 vs. 0.67 ± 0.06 m.s-1, p = 0.02, ES = 0.80; 3rd set 0.68 ± 0.09 vs. 0.66 ± 0.07 m.s-1, p = 0.05, ES = 0.51). In bench press exercises, time to PV was lower in WU compared with WU40 (1st set 574.77 ± 233.46 vs. 694.50 ± 211.71 m.s-1, p less then 0.01, ES = 0.69; 2nd set 533.19 ± 272.22 vs. 662.31 ± 257.51 m.s-1, p = 0.04, ES = 0.43) and total work was higher (4749.90 ± 1312.99 vs. 4631.80 ± 1355.01 j, p = 0.01, ES = 0.54). The results showed that force outputs were mainly optimized by WU80 in squat training and by WU in bench press training. Moreover, warming-up with few repetitions and low loads is not enough to optimize squat and bench press performances.In the present study, we investigated the actinomycetes associated with the Red Sea-derived soft coral Sarcophyton glaucum in terms of biological and chemical diversity. Three strains were cultivated and identified to be members of genera Micromonospora, Streptomyces, and Nocardiopsis; out of them, Micromonospora sp. UR17 was putatively characterized as a new species. In order to explore the chemical diversity of these actinobacteria as far as possible, they were subjected to a series of fermentation experiments under altering conditions, that is, solid and liquid fermentation along with co-fermentation with a mycolic acid-containing strain, namely Nocardia sp. UR23. Each treatment was found to affect these actinomycetes differently in terms of biological activity (i.e., antitrypanosomal activity) and chemical profiles evidenced by LC-HRES-MS-based metabolomics and multivariate analysis. Thereafter, orthogonal projections to latent structures discriminant analysis (OPLS-DA) suggested a number of metabolites to be associated with the antitrypanosomal activity of the active extracts.
Homepage: https://www.selleckchem.com/products/1-phenyl-2-thiourea.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team