Notes
Notes - notes.io |
Signal transducer and activator of transcription 3 (STAT3) is a ubiquitous and pleiotropic transcription factor that plays essential roles in normal development, immunity, response to tissue damage and cancer. We have developed a Venus-STAT3 bimolecular fluorescence complementation assay that allows the visualization and study of STAT3 dimerization and protein-protein interactions in living cells. Inactivating mutations on residues susceptible to post-translational modifications (PTMs) (K49R, K140R, K685R, Y705F and S727A) changed significantly the intracellular distribution of unstimulated STAT3 dimers when the dimers were formed by STAT3 molecules that carried different mutations (ie they were "asymmetric"). Daratumumab Some of these asymmetric dimers changed the proliferation rate of HeLa cells. Our results indicate that asymmetric PTMs on STAT3 dimers could constitute a new level of regulation of STAT3 signaling. We put forward these observations as a working hypothesis, since confirming the existence of asymmetric STAT3 homodimers in nature is extremely difficult, and our own experimental setup has technical limitations that we discuss. However, if our hypothesis is confirmed, its conceptual implications go far beyond STAT3, and could advance our understanding and control of signaling pathways. © 2019 The Authors.The main mammalian heart pacemakers are spindle-shaped cells compressed into tangles within protective layers of collagen in the sino-atrial node (SAN). Two cell types, "dark" and "light," differ on their high or low content of intermediate filaments, but share scarcity of myofibrils and a high content of glycogen. Sarcoplasmic reticulum (SR) is scarce. The free SR (fSR) occupies 0.04% of the cell volume within ~0.4 µm wide peripheral band. The junctional SR (jSR), constituting peripheral couplings (PCs), occupies 0.03% of the cell volume. Total fSR + jSR volume is 0.07% of cell volume, lower than the SR content of ventricular myocytes. The average distance between PCs is 7.6 µm along the periphery. On the average, 30% of the SAN cells surfaces is in close proximity to others. Identifiable gap junctions are extremely rare, but small sites of close membrane-to-membrane contacts are observed. Possibly communication occurs via these very small sites of contact if conducting channels (connexons) are located within them. There is no obvious anatomical detail that might support ephaptic coupling. These observations have implications for understanding of SAN cell physiology, and require incorporation into biophysically detailed models of SAN cell behavior that currently do not include such features. © 2019 The Authors.Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) provide clinical benefits over chemotherapy for lung cancer patients with EGFR activating mutations. Despite initial clinical responses, long-term efficacy is not possible because of acquired resistance to these therapies. We have developed EGFR TKI drug-tolerant (DT) human lung cancer cell lines as a model for de novo resistance. Mass spectroscopic analysis revealed that the cytochrome P450 protein, CYP51A1 (Lanosterol 14α-demethylase), which is directly involved with cholesterol synthesis, was significantly upregulated in the DT cells. Total cellular cholesterol, and more specifically, mitochondrial cholesterol, were found to be upregulated in DT cells. We then used the CYP51A1 inhibitor, ketoconazole, to downregulate cholesterol synthesis. In both parental and DT cells, ketoconazole and EGFR TKIs acted synergistically to induce apoptosis and overcome the development of EGFR tolerance. Lastly, this combination therapy was shown to shrink the growth of tumors in an in vivo mouse model of EGFR TKI resistance. Thus, our study demonstrates for the first time that ketoconazole treatment inhibits upregulation of mitochondrial cholesterol and thereby overcomes EGFR-TKI resistance in lung cancer cells. © 2019 The Authors.Liver diseases represent a major health problem worldwide, in particular, acute liver injury is associated with high mortality and morbidity. Inflammatory macrophages and hepatic stellate cells (HSCs) are known to be involved in the pathogenesis of acute liver injury. In this study, we have investigated the implication of STAT3 inhibition in acute liver injury/early fibrogenesis. In fibrotic human livers, we found STAT3 mRNA expression was significantly upregulated and correlated with collagen I expression. In vitro, STAT3 signaling pathway was found to be activated in TGFβ-activated HSCs and inflammatory macrophages. STAT3 inhibitor, WP1066 significantly inhibited TGFβ-induced collagen I, vimentin and α-SMA expression, and contractility in human HSCs. In LPS- and IFNγ-induced pro-inflammatory macrophages, WP1066 strongly attenuated nitric-oxide release and expression of major inflammatory markers such as TNF-α, iNOS, CCL2, IL-1β, IL-6, and CCR2. In vivo in CCl4-induced acute liver injury mouse model, WP1066 significantly reduced collagen expression, HSCs activation, and intrahepatic inflammation. Finally, in LPS-induced human hepatic 3D spheroid model, WP1066 inhibited LPS-induced fibrotic and inflammatory parameters. In conclusion, our results demonstrate that the therapeutic inhibition of STAT3 pathway using WP1066 targeting HSCs and inflammatory macrophages suggests a potential pharmacological approach for the treatment of acute liver injury. © 2019 The Authors.Dietary intake of ω3 polyunsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid is beneficial for health control. We recently identified 17,18-epoxyeicosatetraenoic acid (17,18-EpETE) as a lipid metabolite endogenously generated from eicosapentaenoic acid that exhibits potent anti-allergic and anti-inflammatory properties. However, chemically synthesized 17,18-EpETE is enantiomeric due to its epoxy group-17(S),18(R)-EpETE and 17(R),18(S)-EpETE. In this study, we demonstrated stereoselective differences of 17(S),18(R)-EpETE and 17(R),18(S)-EpETE in amelioration of skin contact hypersensitivity and found that anti-inflammatory activity was detected in 17(S),18(R)-EpETE, but not in 17(R),18(S)-EpETE. In addition, we found that cytochrome P450 BM-3 derived from Bacillus megaterium stereoselectively converts EPA into 17(S),18(R)-EpETE, which effectively inhibited the development of skin contact hypersensitivity by inhibiting neutrophil migration in a G protein-coupled receptor 40-dependent manner.
Read More: https://www.selleckchem.com/products/daratumumab.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team