Notes
Notes - notes.io |
Fungal natural products are routinely analyzed using target detection protocols by comparing to commercial standards. However, discovery of new products suffers from a lack of high-throughput analytical techniques. Post-data process techniques have become popular tools for natural product confirmations and mycotoxin family analysis. In this work, a visible post-data process procedure with MZmine, GNPS, and Xcalibur was used for efficient analysis of high-resolution mass spectrometry. Conjugated products were screened with an optimized diagnostic fragmentation filtering module in MZmine and further confirmed with Xcalibur by comparing to unconjugated commercial standards. MS/MS spectral data were processed and used to establish a feature based on a molecular networking map in GNPS (Global Natural Products Social Molecular Networking; https//gnps.ucsd.edu), for visualization of fungal natural product families. The results demonstrate the potential of combining MZmine-, GNPS-, and Xcalibur-based methods for visible analysis of fungal natural products.Microvirga flocculans CGMCC 1.16731 can degrade many cyano group-containing neonicotinoid insecticides. Here, its genome was sequenced, and a novel nitrile hydratase gene cluster was discovered in a plasmid. The NHase gene cluster (pnhF) has gene structure β-subunit 1, α-subunit, and β-subunit 2, which is different from previously reported NHase gene structures. Phylogenetic analysis of α-subunits indicated that NHases containing the three subunit (β1αβ2) structure are independent from NHases containing two subunits (αβ). pnhF was successfully expressed in Escherichia coli, and the purified PnhF could convert the nitrile-containing insecticide flonicamid to N-(4-trifluoromethylnicotinoyl)glycinamide. The enzymatic properties of PnhF were investigated using flonicamid as a substrate. Homology models revealed that amino acid residue β1-Glu56 may strongly affect the catalytic activity of PnhF. This study expands our understanding of the structures and functions of NHases and the enzymatic mechanism of the environmental fate of flonicamid.Designing an effective and simple detection method to quantify glyphosate (GLY) herbicide is desirable. Current chromatography-mass spectrometry and electrochemical methods can be used for this purpose, but these methods are difficult to be made portable and need high-cost equipment. Here, we evaluate a luminescent β-diketonate-Eu-ethylenediaminetetraacetic acid complex for GLY quantification in aqueous media on the basis of the luminescent quenching process. This complex successfully measured GLY at concentrations ranging from 5 × 10-7 to 10-5 mol L-1. Theoretical methods (LUMPAC) are also performed to identify the complex most probable structure in solution. We also demonstrate that the metal-organic frameworks HKUST-1 and IRMOF-3, easily synthesized, effectively adsorb GLY in water in about 30 min of contact.3-Ketosteroid Δ1-dehydrogenase (KsdD) is the key enzyme responsible for Δ1-dehydrogenation, which is one of the most valuable reactions for steroid catabolism. Arthrobacter simplex has been widely used in the industry due to its superior bioconversion efficiency, but KsdD information is not yet fully clear. Here, five KsdD homologues were identified in A. simplex CGMCC 14539. Bioinformatic analysis indicated their distinct properties and structures. Each KsdD was functionally confirmed by transcriptional response, overexpression, and heterologous expression. The substantial difference in substrate profiles might be related to the enzyme loop structure. Two promising enzymes (KsdD3 and KsdD5) were purified and characterized, exhibiting strong organic solvent tolerance and clear preference for 4-ene-3-oxosteroids. KsdD5 seemed to be more versatile due to good activity on substrates with or without a substituent at C11 and high optimal temperature and also possessed unique residues. It is the first time that KsdDs have been comprehensively disclosed in the A. simplex industrial strain.ω-Hydroxynonanoic acid and α,ω-nonanedioic acid are used for synthesizing diverse chemicals. Although biological methods are developed, their concentrations are low due to the toxicity of high concentrations of the hydrophobic chemicals toward biocatalysts. Here, we constructed a biocatalytic system with high productivity by adding an adsorbent resin and a strong base anion-exchange resin, reducing the solubility of ω-hydroxynonanoic acid and α,ω-nonanedioic acid, feeding ω-hydroxynonanoic acid, and introducing a cofactor regeneration system. The constructed biocatalytic system converted 300 mM (83.9 g L-1) and 154 mM (43.5 g L-1) oleic acid in the olive oil hydrolysate obtained after resin extraction, which were derived from 110 and 54 g L-1 olive oil, respectively, into 202 mM (35.2 g L-1) ω-hydroxynonanoic acid and 103 mM (19.4 g L-1) α,ω-nonanedioic acid, which are 21- and 24-fold higher values than the previously reported results, respectively. Selleckchem HADA chemical This study may contribute to the industrial biosynthesis of ω-hydroxynonanoic acid and α,ω-nonanedioic acid from olive oil.Hydroxybenzoic acids (HBAs) such as 4-hydroxybenzoic acid (4-HBA) and 3,4-dihydroxybenzoic acid (DHB; protocatechuic acid) and its ester with methanol (methylparaben [MP]) are known to have various functional biological properties, including antibacterial, anticancer, antidiabetic, antiaging, antiviral, and anti-inflammatory activities. Since these compounds are widely used in cosmetic, food, and pharmaceutical industries, the use of renewable feedstocks for the production of HBAs is an area of growing interest. In this study, we used Escherichia coli to synthesize these three hydroxybenzoic acid derivatives (4-HBA, DHB, and MP). We overexpressed ubiC in E. coli to synthesize 4-HBA from chorismate, a substrate that is produced by the shikimate pathway in E. coli. For the synthesis of DHB, an additional gene (pobA) was introduced, while hbad and EHT1 were co-expressed to synthesize MP. To supply more chorismate, we introduced the shikimate gene module construct and selected the best construct for increased yields.
Homepage: https://www.selleckchem.com/products/hada-hydrochloride.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team