Notes
![]() ![]() Notes - notes.io |
Gossypium anomalum (B1B1) is a valuable wild resource for the genetic improvement of G. hirsutum (A1A1D1D1) in terms of fiber quality and disease and pest resistance, but the inherent difficulties in distant hybridization hinder its utilization in breeding programs. Monosomic alien addition lines (MAALs) are powerful tools for interspecific gene transfer. First, to access useful genes from G. anomalum, a fertile hexaploid from G. hirsutum × G. anomalum was obtained and then additional chromosomes were selected using SSR markers in successive backcrosses and self-crossing from BC2F1 to BC4F4. Finally, a complete set of 13 MAALs were developed. All the MAALs were confirmed by chromosome-specific anchored SSRs and genome-wide resequencing. The MAALs demonstrated abundant variation in morphological, agronomic, yield-related, and fiber quality traits. MAAL_3B had excellent fiber strength and fineness, indicating that the transmitted chromosome may carry desirable genes for the observed phenotypes. This complete set of MAALs will provide important genetic bridge material for the identification and introgression of favorable genes from G. anomalum and lay an important foundation for the genetic improvement of cotton.Cooked bean hardness is an important trait for the processing of soybean products such as nimame, natto, miso, and soy sauce. Previously, we showed that cooked bean hardness is primarily affected by the pectin methylesterase gene Glyma03g03360, and that calcium content has a secondary effect on this trait. To establish a simple and timely method for the evaluation of cooked bean hardness, primers of amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) were designed to detect a single-nucleotide polymorphism of Glyma03g03360 and subsequently used to evaluate three soybean progeny lines. The determined genotypes were compared to those identified using the cleaved amplified polymorphic sequence (CAPS) method. Seven out of 284 lines presented different genotypes, which were determined using the two methods A genotypes were incorrectly assigned as heterozygous by CAPS, suggesting that ARMS-PCR is more reliable. Glyma03g03360 genotypes could be used to evaluate cooked bean hardness, except for intermediate values. Cooked bean hardness within the same genotype groups was significantly correlated with calcium contents. These findings indicate that ARMS-PCR is useful for a marker-assisted selection of soybean with soft-cooked beans and that calcium content may be used for additional selection.RNA extraction has been improved by integration of a variety of materials in the protocol, such as phenol, guanidine thiocyanate, and silica, according to the case-specific demands. However, few methods have been designed for high-throughput RNA preparation for large-scale transcriptome studies. In this study, we established a high-throughput guanidinium thiocyanate and isopropyl alcohol based RNA extraction method (HighGI). HighGI is based on simple and phenol-free homemade buffers and the cost is substantially lower than a column-based commercial kit. We demonstrated that the quality and quantity of RNA extracted with HighGI were comparable to those extracted with a conventional phenol/chloroform-based method and a column-based commercial kit. HighGI retained small RNAs less than 200 bp, which are lost with a commercial column-based kit. We also demonstrated that HighGI is readily applicable to semi-automated RNA extraction. HighGI enables high-throughput RNA extraction for large-scale RNA preparation with high yield and quality.The soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is a devastating pest of soybean (Glycine max (L.) Merr.) in the world. Three soybean QTLs for resistance to SCN race 1 were detected through QTL analyses using recombinant inbred lines (RILs) derived from a cross between 'Tokei 758' (susceptible) and 'To-8E' (resistant to races 1 and 3, derived from 'PI 84751' and 'Gedenshirazu'). Two of the three QTLs appear to be rhg1 and Rhg4 from their locations on the linkage map. The third QTL, detected around Satt359 on chromosome 11, was tentatively identified as rhg2. All RILs resistant to race 1 had all three QTLs. We developed lines carrying the three loci in various combinations, including all and none, from descendants of a cross between 'NIL-SCN' (with resistance derived from 'PI 84751' in the 'Natto-shoryu' background) and 'Natto-shoryu'. Evaluating these lines in a race 1-infected field in Mito, Ibaraki, showed that resistance to race 1 required all three loci. Through field evaluation of 10 recombinant fixed pairs that we developed, we located the rhg2 locus to an 821 kb-region between SSR markers Sat_123 (=WGSP11_0140) and BARCSOYSSR11_1420 on chromosome 11.Bacterial wilt, caused by the Ralstonia pseudosolanacearum species complex, is an important vascular disease that limits tomato production in tropical and subtropical regions. Two major quantitative trait loci (QTL) of bacterial wilt resistance on chromosome 6 (Bwr-6) and 12 (Bwr-12) were previously identified in Solanum lycopersicum 'Hawaii 7996'; however, marker-assisted breeding for bacterial wilt resistance is not well established. To dissect the QTL, six cleaved amplified polymorphic sites (CAPS) and derived CAPS (dCAPS) markers within the Bwr-6 region and one dCAPS marker near Bwr-12 were developed, and resistance levels in 117 tomato cultivars were evaluated. Two markers, RsR6-5 on chromosome 6 and RsR12-1 on chromosome 12, were selected based on the genotypic and phenotypic analysis. TPI-1 chemical structure The combination of RsR6-5 and RsR12-1 effectively distinguishes resistant and susceptible cultivars. Furthermore, the efficiency of the two markers was validated in the F3 generation derived from the F2 population between E6203 (susceptible) and Hawaii 7998 (resistant). Resistant alleles at both loci led to the resistance to bacterial wilt. These markers will facilitate marker-assisted breeding of tomato resistant to bacterial wilt.Grain size is one of the most important agricultural traits in rice. To increase grain yield, we screened a large grain mutant from mutants with the 'Koshihikari' background. As a result, we obtained a mutant, KEMS39, that has a large grain size and increased yield. Cultivation tests revealed that this mutant had improved lodging resistance with thicker internodes. Next-generation sequencing analysis revealed the presence of a 67 bp deletion in the GW2 mRNA, owing to a mutation in the 3' splice site of the sixth intron of the GW2 gene. To determine whether this mutation was responsible for the larger grain and thicker internodes, we performed gene editing and obtained a mutant with a 7 bp deletion, including this 3' splice site. As this gw2 mutant had large grains and thicker internodes, the causal gene of KEMS39 was determined as GW2. Thicker internodes are attributed to the pleiotropic effect of gw2 mutation. On the basis of these results, we conclude that gw2 mutation has the potential to be an important genetic resource with the ability to achieve a well-balanced and high-yielding effect that simultaneously improves grain productivity and lodging resistance.
Homepage: https://www.selleckchem.com/products/tpi-1.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team