Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
A double functionalization of vicinal sp3 C-H bonds has been developed, wherein a β amine and γ iodide are incorporated onto an aliphatic alcohol in a single operation. This approach is enabled by an imidate radical chaperone, which selectively affords a transient β alkene that is amino-iodinated in situ. Overall, the radical-polar-crossover cascade entails the following key steps (i) β C-H iodination via 1,5-hydrogen atom transfer (HAT), (ii) desaturation via I2 complexation, and (iii) vicinal amino-iodination of an in situ generated allyl imidate. The synthetic utility of this double C-H functionalization is illustrated by conversion of aliphatic alcohols to a diverse collection of α,β,γ substituted products bearing heteroatoms on three adjacent carbons. The radical-polar crossover mechanism is supported by various experimental probes, including isotopic labeling, intermediate validation, and kinetic studies.Developing environmentally benign, multifunctional waterproof and breathable membranes (WBMs) is of great importance but still faces enormous challenges. Here, an environmentally benign fluorine-free, ultraviolet (UV) blocking, and antibacterial WBM with a high level of waterproofness and breathability is developed on a large scale by combining electrospinning and step-by-step surface coating technology. BIRB796 Fluorine-free water-based alkylacrylates with long hydrocarbon chains were coated onto polyamide 6 fibrous membranes to construct robust hydrophobic surfaces. The subsequent titanium dioxide nanoparticle emulsion coating prominently decreased the maximum pore size, leading to higher water resistance, endowing the membranes with efficient UV-resistant and antibacterial properties. The resulting fibrous membranes possessed excellent waterproofness of 106.2 kPa, exceptional breathability of 10.3 kg m-2 d-1, a significant UV protection factor of 430.5, together with a definite bactericidal efficiency of 99.9%. We expect that this methodology for construction of environmentally benign and multifunctional WBMs will shed light on the material design, and the prepared membranes could implement their promising applications in covering materials, outdoor equipment, protective clothing, and high-altitude garments.Previous micromotor based biosensing studies used to functionalize the surface of the micromotor with specific molecular probes for binding of target analyte, thus, limiting the use of the micromotor for the specific target. In contrast, here, we introduce a novel approach of using a non-functionalized micromotor as a generic cargo carrier being able to perform label-free and dynamic loading, transport and release of functionalized beads. Hence, such an approach enables one to use the same micromotor system for sensing of varying targets via different commercially available functionalized beads, demonstrating the use of micromotors as a practical and versatile means for biosensing. We have also introduced a simplified microfluidic design that can be used for immunosensing or DNA binding tests without necessity for complicated fluid handling (buffer exchange, washing etc.) steps. We expect this approach to open up new realizations of simplified and generic biosensing platforms.For better exciton separation and high catalytic activity, the most trailblazing stratagem is to construct defect engineered low-dimensional p-n heterojunction framed photocatalytic systems. In this context, we have developed a rod-sheet (1D-2D) p-n heterojunction of MCeO2-BiFeO3 by a simple hydrothermal method and scrutinized its photocatalytic performance toward N2 fixation and phenol/Cr(VI) detoxification. The intimate contact between MCeO2 and BiFeO3 in the junction material is well established via X-ray diffraction (XRD), UV-vis diffuse reflectance spectrosopy (DRS), transmission electron microscopy (TEM), and photoelectrochemical studies. Further, scanning electron microscopy (SEM) and TEM pictures clearly support the decoration of MCeO2 nanorods over BiFeO3 sheets and also depict the junction boundary. Additionally, photoluminescence (PL), electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), and Raman measurements give solid evidence toward the presence of an oxygen vacancy. Moreover, the Mott-Schottky result indicates a feasible band edge potential favoring the p-n heterojunction with a built-in electric field between BiFeO3 and MCeO2 favoring a double charge dynamic. The MCeO2-BFO p-n junction displays a notable catalytic activity, i.e., 98.2% Cr(VI) reduction and 85% phenol photo-oxidation, and produces 117.77 μmol h-1 g-1 of ammonia under light irradiation. Electrochemical analysis suggests a four-electron/five proton-coupled N2 photoreduction pathway. The designed oxygen vacancy oriented p-n heterojunction suffering double charge migration shows significant catalytic performance due to effective electron-hole separation as justified via PL, electrochemical impedance spectra (EIS), and Bode phase analysis.From a glass of water to glaciers in Antarctica, water-air and ice-air interfaces are abundant on Earth. Molecular-level structure and dynamics at these interfaces are key for understanding many chemical/physical/atmospheric processes including the slipperiness of ice surfaces, the surface tension of water, and evaporation/sublimation of water. Sum-frequency generation (SFG) spectroscopy is a powerful tool to probe the molecular-level structure of these interfaces because SFG can specifically probe the topmost interfacial water molecules separately from the bulk and is sensitive to molecular conformation. Nevertheless, experimental SFG has several limitations. For example, SFG cannot provide information on the depth of the interface and how the orientation of the molecules varies with distance from the surface. By combining the SFG spectroscopy with simulation techniques, one can directly compare the experimental data with the simulated SFG spectra, allowing us to unveil the molecular-level structure of water-air and ice-air interfaces. Here, we present an overview of the different simulation protocols available for SFG spectra calculations. We systematically compare the SFG spectra computed with different approaches, revealing the advantages and disadvantages of the different methods. Furthermore, we account for the findings through combined SFG experiments and simulations and provide future challenges for SFG experiments and simulations at different aqueous interfaces.
Website: https://www.selleckchem.com/products/BIRB-796-(Doramapimod).html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team