Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Transport measurements through a few-electron circular quantum dot in bilayer graphene display bunching of the conductance resonances in groups of four, eight, and twelve. This is in accordance with the spin and valley degeneracies in bilayer graphene and an additional threefold "minivalley degeneracy" caused by trigonal warping. For small electron numbers, implying a small dot size and a small displacement field, a two-dimensional s shell and then a p shell are successively filled with four and eight electrons, respectively. For electron numbers larger than 12, as the dot size and the displacement field increase, the single-particle ground state evolves into a threefold degenerate minivalley ground state. A transition between these regimes is observed in our measurements and can be described by band-structure calculations. Measurements in the magnetic field confirm Hund's second rule for spin filling of the quantum dot levels, emphasizing the importance of exchange interaction effects.Detection mechanisms for low mass bosonic dark matter candidates, such as the axion or hidden photon, leverage potential interactions with electromagnetic fields, whereby the dark matter (of unknown mass) on rare occasion converts into a single photon. Current dark matter searches operating at microwave frequencies use a resonant cavity to coherently accumulate the field sourced by the dark matter and a near standard quantum limited (SQL) linear amplifier to read out the cavity signal. To further increase sensitivity to the dark matter signal, sub-SQL detection techniques are required. Here we report the development of a novel microwave photon counting technique and a new exclusion limit on hidden photon dark matter. We operate a superconducting qubit to make repeated quantum nondemolition measurements of cavity photons and apply a hidden Markov model analysis to reduce the noise to 15.7 dB below the quantum limit, with overall detector performance limited by a residual background of real photons. With the present device, we perform a hidden photon search and constrain the kinetic mixing angle to ε≤1.68×10^-15 in a band around 6.011 GHz (24.86 μeV) with an integration time of 8.33 s. This demonstrated noise reduction technique enables future dark matter searches to be sped up by a factor of 1,300. By coupling a qubit to an arbitrary quantum sensor, more general sub-SQL metrology is possible with the techniques presented in this Letter.Supermagnetosonic perpendicular flows are magnetically driven by a large radius theta-pinch experiment. Fine spatial resolution and macroscopic coverage allow the full structure of the plasma-piston coupling to be resolved in laboratory experiment for the first time. A moving ambipolar potential is observed to reflect unmagnetized ions to twice the piston speed. Magnetized electrons balance the radial potential via Hall currents and generate signature quadrupolar magnetic fields. Electron heating in the reflected ion foot is adiabatic.We investigate the effect of soft gluon radiations on the azimuthal angle correlation between the total and relative momenta of two jets in inclusive and exclusive dijet processes. We show that the final state effect induces a sizable cos(2ϕ) anisotropy due to gluon emissions near the jet cones. The phenomenological consequences of this observation are discussed for various collider experiments, including diffractive processes in ultraperipheral pA and AA collisions, inclusive and diffractive dijet production at the EIC, and inclusive dijet in pp and AA collisions at the LHC.We study the role of noise on the nature of the transition to collective motion in dry active matter. Starting from field theories that predict a continuous transition at the deterministic level, we show that fluctuations induce a density-dependent shift of the onset of order, which in turn changes the nature of the transition into a phase-separation scenario. Our results apply to a range of systems, including models in which particles interact with their "topological" neighbors that have been believed so far to exhibit a continuous onset of order. Our analytical predictions are confirmed by numerical simulations of fluctuating hydrodynamics and microscopic models.In this Letter, we present a molecular theory of nucleation from dilute phases such as vapors or dilute solutions. The theory can model the nonclassical two-step crystal nucleation seen in many systems. When applied to study and analyze the crystal nucleation pathways from Lennard-Jones vapor, we find that prior explanations of the two-step mechanism based on lower barrier height for liquid nuclei is incomplete. The analysis from the molecular theory reveal that a complete explanation would also require consideration of anisotropy in the diffusion constants for growth of liquid droplets vis-á-vis the crystal nuclei.We study the ground-state entanglement of gapped domain walls between topologically ordered systems in two spatial dimensions. We derive a universal correction to the ground-state entanglement entropy, which is equal to the logarithm of the total quantum dimension of a set of superselection sectors localized on the domain wall. Saracatinib This expression is derived from the recently proposed entanglement bootstrap method.Mechanical behavior of atomically thin membranes is governed by bending rigidity and the Gaussian modulus. However, owing to methodological drawbacks, these two parameters have not been investigated sufficiently. We employed atomic force microscopy to demonstrate that the bending rigidity can be extracted from a quadratic relationship of adhesion energy with monolayer curvatures of rolled and unrolled graphene. The tip-induced topological defects revealed the Gaussian modulus; to the best of our knowledge, this is the first study on these parameters. Our study may hold great significance because existing investigations have been performed only on flat graphene. The configurational (strain) energy was evaluated via changes in the surface geometry, with subatomic resolution, by three-dimensional analyses of attractive interatomic forces. The mechanical parameters, evaluated at the hollow sites of the honeycomb lattice, were consistent with the isotropic elastic attributes. The remarkably large negative Gaussian modulus, observed when a single carbon atom was located at the center of the tip-induced bump, revealed attractive interactions between the topological defects and geometric potentials of the Gaussian curvature.
Homepage: https://www.selleckchem.com/products/AZD0530.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team