Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Due to the frequent oil spill accidents and pollution of industrial oily wastewater, oil fouling has become a great challenge to polymeric membrane ion-selective electrodes (ISEs) for applications in oil-contaminated areas. Herein, a simple approach is proposed to enhance the oil-fouling resistance of polymeric membrane ISEs by surface modification of a zwitterionic polymer-based underwater oleophobic coating. selleck inhibitor As a proof-of-concept, a classical poly(vinyl chloride) membrane-based calcium ion-selective electrode (Ca2+-ISE) is chosen as a model sensor. The zwitterionic polymer-based coating can be readily modified on the sensor's surface by immersion of the electrode into a mixture solution of dopamine and a zwitterionic acrylate monomer (i.e., sulfobetaine methacrylate, SBMA). The formed poly(SBMA) (PSBMA) coating alters the oleophilic membrane surface to an oleophobic one, which endows the surface with excellent self-cleaning properties without loss of the sensor's analytical performance. Compared to the pristine Ca2+-ISE, the PSBMA-modified Ca2+-ISE exhibits an improved analytical stability when exposed to oil-containing wastewater. The proposed approach can be explored to enhance the oil-fouling resistance of other polymeric membrane-based electrochemical sensors for use in the oil-polluted environment.The dinuclear iron complex [(H2O)-FeIII-(ppq)-O-(ppq)-FeIII-Cl]3+ (FeIII(ppq), ppq = 2-(pyrid-2'-yl)-8-(1″,10″-phenanthrolin-2″-yl)-quinoline) demonstrates a catalytic activity about one order of magnitude higher than the mononuclear iron complex [Cl-FeIII(dpa)-Cl]+ (FeIII(dpa), dpa = N,N-di(1,10-phenanthrolin-2-yl)-N-isopentylamine) for the oxygen evolution reaction (OER). However, the mechanism behind such an unusually high activity has remained largely unclear. To solve this puzzle, a decomposition-and-reaction mechanism is proposed for the OER with the dinuclear FeIII(ppq) complex as the initial state of the catalytic agent. In this mechanism, the high-valent dinuclear iron complex first dissociates into two mononuclear moieties, and the oxidized mononuclear iron complexes directly catalyze the formation of an O-O bond through a nitrate attack pathway with nitrate functioning as a cocatalyst. Density functional theory calculations reveal that it is the electron-deficient microenvironment around the iron center that gives rise to the remarkable catalytic activity observed experimentally. Therefore, the outstanding performance of the FeIII(ppq) catalyst can be ascribed to the high reactivity of its mononuclear moieties in a high oxidation state, which is concomitant with the structural stability of the low-valent dinuclear complex. The theoretical insights provided by this study could be useful for the optimization and design of novel iron-based water oxidation catalysts.Here, we report on three new triphenylamine-based enamines synthesized by condensation of an appropriate primary amine with 2,2-diphenylacetaldehyde and characterized by experimental techniques and density functional theory (DFT) computations. Experimental results allow highlighting attractive properties including solid-state ionization potential in the range of 5.33-5.69 eV in solid-state and hole mobilities exceeding 10-3 cm2/V·s, which are higher than those in spiro-OMeTAD at the same electric fields. DFT-based analysis points to the presence of several conformers close in energy at room temperature. The newly synthesized hole-transporting materials (HTMs) were used in perovskite solar cells and exhibited performances comparable to that of spiro-OMeTAD. The device containing one newly synthesized hole-transporting enamine was characterized by a power conversion efficiency of 18.4%. Our analysis indicates that the perovskite-HTM interface dominates the properties of perovskite solar cells. PL measurements indicate smaller efficiency for perovskite-to-new HTM hole transfer as compared to spiro-OMeTAD. Nevertheless, the comparable power conversion efficiencies and simple synthesis of the new compounds make them attractive candidates for utilization in perovskite solar cells.A new hybrid non-ribosomal peptide-polyketide antibiotic (serratamid) for phytoprotection was isolated from the ethyl acetate layer of tryptic soy agar culture of the soil bacterium Serratia plymuthica C1 through bioassay-guided fractionation. Its chemical structure was elucidated using instrumental analyses, such as mass and nuclear magnetic resonance spectrometry. Serratamid showed antibacterial activity against 15 phytopathogenic bacteria, with minimum inhibitory concentration (MIC) values ranging from 0.244 to 31.25 μg/mL. In vitro, it displayed strong antibacterial activity against Ralstonia solanacearum and four Xanthomonas spp., with MIC values (0.244-0.488 μg/mL) superior to those of streptomycin sulfate, oxolinic acid, and oxytetracycline. Further, serratamid and the ethyl acetate layer of S. plymuthica C1 effectively reduced bacterial wilt caused by R. solanacearum on tomato seedlings and fire blight caused by Erwinia on apple fruits in a dose-dependent manner. These results suggest that serratamid is a promising candidate as a potent bactericide for controlling bacterial diseases.Desorption/ionization (DI) methods play an important role among the panel of mass spectrometric (MS) approaches for the rapid and sensitive quantification of drugs from the surface of solid samples. The possibility to implement these approaches for pharmacokinetic/pharmacodynamic investigations in early phase clinical trials depends on the ability to validate quantification assays according to regulatory guidelines (e.g., US Food and Drug Administration and European Medicines Agency) for bioanalytical method validation. However, these guidelines were designed for the validation of liquid chromatography-MS (LC-MS) methods and ligand binding assays. To apply the validation parameters to DI-MS methods (also referred here as on-surface MS) for drug quantification, it is important to consider the particularities of DI approaches compared to LC-MS methods. In this Perspective, we summarize the various applications of on-surface MS methods for drug quantification with their advantages over other MS methods, and provide our point of view regarding future proper method development and validation.
My Website: https://www.selleckchem.com/products/bt-11.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team