Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The method was applied to Unmanned Aerial Vehicle (UAV) images of building and non-building areas. The results were compared with frequently used matching techniques, such as scale-invariant feature transform (SIFT), speeded-up robust features (SURF), synthetic aperture radar-SIFT (SAR-SIFT), and Affine SIFT (ASIFT). The method outperforms other matching methods in root mean square error (RMSE) and matching performance (matched and not matched). The proposed method is believed to be a reliable solution for pinpointing surface information through image matching with different geometries obtained via TIR and visible sensors.The stochastic model, together with the functional model, form the mathematical model of observation that enables the estimation of the unknown parameters. In Global Navigation Satellite Systems (GNSS), the stochastic model is an especially important element as it affects not only the accuracy of the positioning model solution, but also the reliability of the carrier-phase ambiguity resolution (AR). In this paper, we study in detail the stochastic modeling problem for Multi-GNSS positioning models, for which the standard approach used so far was to adopt stochastic parameters from the Global Positioning System (GPS). The aim of this work is to develop an individual, empirical stochastic model for each signal and each satellite block for GPS, GLONASS, Galileo and BeiDou systems. The realistic stochastic model is created in the form of a fully populated variance-covariance (VC) matrix that takes into account, in addition to the Carrier-to-Noise density Ratio (C/N0)-dependent variance function, also the cross- and time-correlations between the observations. The weekly measurements from a zero-length and very short baseline are utilized to derive stochastic parameters. The impact on the AR and solution accuracy is analyzed for different positioning scenarios using the modified Kalman Filter. Comparing the positioning results obtained for the created model with respect to the results for the standard elevation-dependent model allows to conclude that the individual empirical stochastic model increases the accuracy of positioning solution and the efficiency of AR. Veliparib The optimal solution is achieved for four-system Multi-GNSS solution using fully populated empirical model individual for satellite blocks, which provides a 2% increase in the effectiveness of the AR (up to 100%), an increase in the number of solutions with errors below 5 mm by 37% and a reduction in the maximum error by 6 mm compared to the Multi-GNSS solution using the elevation-dependent model with neglected measurements correlations.This study combines satellite observation, cloud platforms, and geographical information systems (GIS) to investigate at a macro-scale level of observation the thermal conditions of two historic clusters in Cyprus, namely in Limassol and Strovolos municipalities. The two case studies share different environmental and climatic conditions. The former site is coastal, the last a hinterland, and they both contain historic buildings with similar building materials and techniques. For the needs of the study, more than 140 Landsat 7 ETM+ and 8 LDCM images were processed at the Google Earth Engine big data cloud platform to investigate the thermal conditions of the two historic clusters over the period 2013-2020. The multi-temporal thermal analysis included the calibration of all images to provide land surface temperature (LST) products at a 100 m spatial resolution. Moreover, to investigate anomalies related to possible land cover changes of the area, two indices were extracted from the satellite images, the normalised difference vegetation index (NDVI) and the normalised difference build index (NDBI). Anticipated results include the macro-scale identification of multi-temporal changes, diachronic changes, the establishment of change patterns based on seasonality and location, occurring in large clusters of historic buildings.Population-based optimization algorithms are one of the most widely used and popular methods in solving optimization problems. In this paper, a new population-based optimization algorithm called the Teamwork Optimization Algorithm (TOA) is presented to solve various optimization problems. The main idea in designing the TOA is to simulate the teamwork behaviors of the members of a team in order to achieve their desired goal. The TOA is mathematically modeled for usability in solving optimization problems. The capability of the TOA in solving optimization problems is evaluated on a set of twenty-three standard objective functions. Additionally, the performance of the proposed TOA is compared with eight well-known optimization algorithms in providing a suitable quasi-optimal solution. The results of optimization of objective functions indicate the ability of the TOA to solve various optimization problems. Analysis and comparison of the simulation results of the optimization algorithms show that the proposed TOA is superior and far more competitive than the eight compared algorithms.With the increase in the digitization efforts of herbarium collections worldwide, dataset repositories such as iDigBio and GBIF now have hundreds of thousands of herbarium sheet images ready for exploration. Although this serves as a new source of plant leaves data, herbarium datasets have an inherent challenge to deal with the sheets containing other non-plant objects such as color charts, barcodes, and labels. Even for the plant part itself, a combination of different overlapping, damaged, and intact individual leaves exist together with other plant organs such as stems and fruits, which increases the complexity of leaf trait extraction and analysis. Focusing on segmentation and trait extraction on individual intact herbarium leaves, this study proposes a pipeline consisting of deep learning semantic segmentation model (DeepLabv3+), connected component analysis, and a single-leaf classifier trained on binary images to automate the extraction of an intact individual leaf with phenotypic traits. The proposed method achieved a higher F1-score for both the in-house dataset (96%) and on a publicly available herbarium dataset (93%) compared to object detection-based approaches including Faster R-CNN and YOLOv5. Furthermore, using the proposed approach, the phenotypic measurements extracted from the segmented individual leaves were closer to the ground truth measurements, which suggests the importance of the segmentation process in handling background noise. Compared to the object detection-based approaches, the proposed method showed a promising direction toward an autonomous tool for the extraction of individual leaves together with their trait data directly from herbarium specimen images.
Homepage: https://www.selleckchem.com/products/ABT-888.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team