Notes
![]() ![]() Notes - notes.io |
The transcriptional coactivator with PDZ-binding motif (TAZ) (WWTR1) induces epithelial-mesenchymal transition and enhances drug resistance in multiple cancers. TAZ has been shown to interact with transcription factors in the nucleus, but when phosphorylated, translocates to the cytoplasm and is degraded through proteasomes. Here, we identified a compound TAZ inhibitor 4 (TI-4) that shifted TAZ localization to the cytoplasm independently of its phosphorylation. We used affinity beads to ascertain a putative target of TI-4, chromosomal segregation 1 like (CSE1L), which is known to be involved in the recycling of importin α and as a biomarker of cancer malignancy. We found that TI-4 suppressed TAZ-mediated transcription in a CSE1L-dependent manner. CSE1L overexpression increased nuclear levels of TAZ, whereas CSE1L silencing delayed its nuclear import. We also found via the in vitro coimmunoprecipitation experiments that TI-4 strengthened the interaction between CSE1L and importin α5 and blocked the binding of importin α5 to TAZ. WWTR1 silencing attenuated CSE1L-promoted colony formation, motility, and invasiveness of human lung cancer and glioblastoma cells. Conversely, CSE1L silencing blocked TAZ-promoted colony formation, motility, and invasiveness in human lung cancer and glioblastoma cells. In human cancer tissues, the expression level of CSE1L was found to correlate with nuclear levels of TAZ. These findings support that CSE1L promotes the nuclear accumulation of TAZ and enhances malignancy in cancer cells.Sensing noxiously high temperatures is crucial for living organisms to avoid heat-induced injury. The TRPV1 channel has long been known as a sensor for noxious heat. However, the mechanism of how this channel is activated by heat remains elusive. Here we found that a series of polyols including sucrose, sorbitol, and hyaluronan significantly elevate the heat activation threshold temperature of TRPV1. click here The modulatory effects of these polyols were only observed when they were perfused extracellularly. Interestingly, mutation of residues E601 and E649 in the outer pore region of TRPV1 largely abolished the effects of these polyols. We further observed that intraplantar injection of polyols into the hind paws of rats reduced their heat-induced pain response. Our observations not only suggest that the extracellular regions of TRPV1 are critical for the modulation of heat activation by polyols, but also indicate a potential role of polyols in reducing heat-induced pain sensation.Insulin sensitizers and incretin mimetics are antidiabetic agents with vastly different mechanisms of action. Thiazolidinedione (TZD) insulin sensitizers are associated with weight gain, whereas glucagon-like peptide-1 receptor agonists can induce weight loss. We hypothesized that combination of a TZD insulin sensitizer and the glucagon-like peptide-1 receptor agonist liraglutide would more significantly improve mouse models of diabetes and nonalcoholic steatohepatitis (NASH). Diabetic db/db and MS-NASH mice were treated with the TZD MSDC-0602K by oral gavage, liraglutide (Lira) by s.c. injection, or combination 0602K+Lira. Lira slightly reduced body weight and modestly improved glycemia in db/db mice. Comparatively, 0602K-treated and 0602K+Lira-treated mice exhibited slight weight gain but completely corrected glycemia and improved glucose tolerance. 0602K reduced plasma insulin, whereas Lira further increased the hyperinsulinemia of db/db mice. Surprisingly, 0602K+Lira treatment reduced plasma insulin and C-peptide to the same extent as mice treated with 0602K alone. 0602K did not reduce glucose-stimulated insulin secretion in vivo, or in isolated islets, indicating the reduced insulinemia was likely compensatory to improved insulin sensitivity. In MS-NASH mice, both 0602K or Lira alone improved plasma alanine aminotransferase and aspartate aminotransferase, as well as liver histology, but more significant improvements were observed with 0602K+Lira treatment. 0602K or 0602K+Lira also increased pancreatic insulin content in both db/db and MS-NASH mice. In conclusion, MSDC-0602K corrected glycemia and reduced insulinemia when given alone, or in combination with Lira. However, 0602K+Lira combination more significantly improved glucose tolerance and liver histology, suggesting that this combination treatment may be an effective therapeutic strategy for diabetes and NASH.GPR133 (ADGRD1), an adhesion G protein-coupled receptor (GPCR) whose canonical signaling activates GαS-mediated generation of cytosolic cAMP, has been shown to be necessary for the growth of glioblastoma (GBM), a brain malignancy. The extracellular N terminus of GPR133 is thought to be autoproteolytically cleaved into N-terminal and C- terminal fragments (NTF and CTF, respectively). However, the role of this cleavage in receptor activation remains unclear. Here, we used subcellular fractionation and immunoprecipitation approaches to show that the WT GPR133 receptor is cleaved shortly after protein synthesis and generates significantly more canonical signaling than an uncleavable point mutant GPR133 (H543R) in patient-derived GBM cultures and HEK293T cells. After cleavage, the resulting NTF and CTF remain noncovalently bound to each other until the receptor is trafficked to the plasma membrane, where we demonstrated NTF-CTF dissociation occurs. Using a fusion of the CTF of GPR133 and the N terminus of thrombin-activated human protease-activated receptor 1 as a controllable proxy system to test the effect of intramolecular cleavage and dissociation, we also showed that thrombin-induced cleavage and shedding of the human protease-activated receptor 1 NTF increased intracellular cAMP levels. These results support a model wherein dissociation of the NTF from the CTF at the plasma membrane promotes GPR133 activation and downstream signaling. These findings add depth to our understanding of the molecular life cycle and mechanism of action of GPR133 and provide critical insights that will inform therapeutic targeting of GPR133 in GBM.After activation of G protein-coupled receptors, G protein βγ dimers may translocate from the plasma membrane to the Golgi apparatus (GA). We recently report that this translocation activates extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) via PI3Kγ; however, how Gβγ-PI3Kγ activates the ERK1/2 pathway is unclear. Here, we demonstrate that chemokine receptor CXCR4 activates ADP-ribosylation factor 1 (ARF1), a small GTPase important for vesicle-mediated membrane trafficking. This activation is blocked by CRISPR-Cas9-mediated knockout of the GA-translocating Gγ9 subunit. Inducible targeting of different Gβγ dimers to the GA can directly activate ARF1. CXCR4 activation and constitutive Gβγ recruitment to the GA also enhance ARF1 translocation to the GA. We further demonstrate that pharmacological inhibition and CRISPR-Cas9-mediated knockout of PI3Kγ markedly inhibit CXCR4-mediated and Gβγ translocation-mediated ARF1 activation. We also show that depletion of ARF1 by siRNA and CRISPR-Cas9 and inhibition of GA-localized ARF1 activation abolish ERK1/2 activation by CXCR4 and Gβγ translocation to the GA and suppress prostate cancer PC3 cell migration and invasion.
Homepage: https://www.selleckchem.com/products/BafilomycinA1.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team