Notes
![]() ![]() Notes - notes.io |
Determining minimum levels of fat and sucrose needed for the sensory acceptance of sponge cake while increasing the nutritional quality was the main objective of this study. Sponge cakes with 0, 25, 50 and 75% sucrose replacement (SR) using a combination of inulin and Rebaudioside A (Reb A) were prepared. Sensory acceptance testing (SAT) was carried out on samples. Following experimental results, four more samples were prepared where fat was replaced sequentially (0, 25, 50 and 75%) in sucrose-replaced sponge cakes using pureed butter beans (Pbb) as a replacer. Fat-replaced samples were investigated using sensory (hedonic and intensity) and physicochemical analysis. Texture liking and overall acceptability (OA) were the only hedonic sensory parameters significantly affected after a 50% SR in sponge cake (p less then 0.05). A 25% SR had no significant impact on any hedonic sensory properties and samples were just as accepted as the control sucrose sample. A 30% SR was chosen for further experiments. After a 50% fat replacement (FR), no significant differences were found between 30% sucrose-replaced sponge cake samples in relation to all sensory (hedonic and intensity) parameters investigated. Flavour and aroma intensity attributes such as buttery and sweet and, subsequently, liking and OA of samples were negatively affected after a 75% FR (p less then 0.05). Instrumental texture properties (hardness and chewiness (N)) did not discriminate between samples with increasing levels of FR using Pbb. Moisture content increased significantly with FR (p less then 0.05). A simultaneous reduction in fat (42%) and sucrose was achieved (28%) in sponge cake samples without negatively affecting OA. Optimised samples contained significantly more dietary fibre (p less then 0.05).Protein phosphorylation cascades are universal in cell signaling. While kinome diversity allows specific phosphorylation events, relatively few phosphatases dephosphorylate key signaling proteins. Fungal mitogen activated protein kinases (MAPK), in contrast to their mammalian counterparts, often show detectable basal phosphorylation levels. Dephosphorylation, therefore, could act as a signal. In Cochliobolus heterostrophus, the Dothideomycete causing Southern corn leaf blight, ferulic acid (FA)-an abundant phenolic found in plant host cell walls-acts as a signal to rapidly dephosphorylate the stress-activated MAP kinase Hog1 (High Osmolarity Glycerol 1). In order to identify the protein phosphatases responsible, we constructed mutants in Hog1 phosphatases predicted from the genome by homology to yeast and other species. We found that Cochliobolus heterostrophus mutants lacking PtcB, a member of the PP2C family, exhibited altered growth, sporulation, and attenuated dephosphorylation in response to FA. The loss of the dual-specificity phosphatase CDC14 led to slow growth, decreased virulence, and attenuated dephosphorylation. Mutants in two predicted tyrosine phosphatase genes PTP1 and PTP2 showed normal development and virulence. Our results suggest that a network of phosphatases modulate Hog1's dual phosphorylation levels. The mutants we constructed in this work provide a starting point to further unravel the signaling hierarchy by which exposure to FA leads to stress responses in the pathogen.Glycerol pretreatment is a promising method for the environmentally-friendly transformation of lignocellulosic materials into sustainable cellulose-rich raw materials (i.e., biopolymer) to fabricate biocomposites. Here, a comparison of aqueous acidified glycerol (AAG) pretreatment of wheat straw (WS) with alkaline, hot water, and dilute acid pretreatments on the thermal and mechanical characteristics of their fabricated composite board is presented. A comparison of total energy expenditure during WS pretreatment with AAG and other solutions was estimated and a comparative influence of AAG processing on lignocellulosic constituents and thermal stability of WS fiber was studied. Results imply that AAG pretreatment was superior in generating cellulose-rich fiber (CRF) as compared to other pretreatments and enhanced the cellulose contents by 90% compared to raw WS fiber. Flexural strength of acidic (40.50 MPa) and hot water treated WS composite (38.71 MPa) was higher compared to the value of 33.57 MPa for untreated composite, but AAG-treated composites exhibited lower values of flexural strength (22.22 MPa) compared to untreated composite samples. Conversely, AAG pretreatment consumed about 56% lesser energy for each kg of WS processed as compared to other pretreatments. These findings recognize that glycerol pretreatment could be a clean and new pretreatment strategy to convert agricultural waste into high-quality CRF as a sustainable raw material source for engineered biocomposite panels.In this study, an attempt was made to develop a real-time control strategy using oxidation-reduction potential (ORP) and pH (mV) time profiles for the efficient operation of bio-liquor circulation system (BCS) in swine farms and its effectiveness in reducing odor emission through improving manure properties in the slurry pit was evaluated. The lab-scale BCS used in this study comprised a bioreactor and a slurry pit. The bioreactor was operated in a sequence of inflow of swine manure ® anoxic phase ® aerobic phase ® circulation to the slurry pit. The improvement in swine manure properties was elucidated by comparing the results of the BCS slurry pit (circulation type, CT) and conventional slurry pit (non-circulation type, NCT). The results revealed that the ORP time profile successfully detected the nitrate knee point (NKP) in the anoxic phase. However, it was less stable in detecting the nitrogen break point (NBP) in the aerobic phase. The pH (mV) time profile showed a more efficient detection of NBP. Compared to the NCT slurry pit, concentrations of ammonium nitrogen (NH4-N) and soluble total organic carbon (STOC) and other analyzed swine manure properties were much lower in the CT slurry pit. SCH900353 In the aspect of odor reduction, around 98.3% of NH3 was removed in the CT slurry pit. The real-time controlled BCS can overcome the drawbacks of fixed time-based BCS operation and therefore can be considered as a useful tool to reduce odor emission from intensive swine farming operations. However, further studies and refinement in control algorithms might be required prior to its large-scale application.
Here's my website: https://www.selleckchem.com/products/mk-8353-sch900353.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team