NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Automatic Roux-en-Y Abdominal Sidestep, is it Less dangerous compared to Laparoscopic Get around?
CSV-DML is constructed to work directly on the kernel-transformed instances. Specifically, we learn a specific Mahalanobis distance metric from the kernel-transformed training instances and train a DML-based separating hyperplane based on it. An iterated approach is formulated to optimize CSV-DML, which is based on generalized block coordinate descent and can converge to the global optimum. In CSV-DML, since the dimension of kernel-transformed instances is only related to the number of original training instances, we develop a novel parameter reduction scheme for reducing the feature dimension. Extensive experiments show that the proposed CSV-DML method outperforms the previous methods.Video object detection, a basic task in the computer vision field, is rapidly evolving and widely used. In recent years, deep learning methods have rapidly become widespread in the field of video object detection, achieving excellent results compared with those of traditional methods. However, the presence of duplicate information and abundant spatiotemporal information in video data poses a serious challenge to video object detection. Therefore, in recent years, many scholars have investigated deep learning detection algorithms in the context of video data and have achieved remarkable results. Considering the wide range of applications, a comprehensive review of the research related to video object detection is both a necessary and challenging task. This survey attempts to link and systematize the latest cutting-edge research on video object detection with the goal of classifying and analyzing video detection algorithms based on specific representative models. WM-1119 purchase The differences and connections between video object detection and similar tasks are systematically demonstrated, and the evaluation metrics and video detection performance of nearly 40 models on two data sets are presented. Finally, the various applications and challenges facing video object detection are discussed.In this work, time-driven learning refers to the machine learning method that updates parameters in a prediction model continuously as new data arrives. Among existing approximate dynamic programming (ADP) and reinforcement learning (RL) algorithms, the direct heuristic dynamic programming (dHDP) has been shown an effective tool as demonstrated in solving several complex learning control problems. It continuously updates the control policy and the critic as system states continuously evolve. It is therefore desirable to prevent the time-driven dHDP from updating due to insignificant system event such as noise. Toward this goal, we propose a new event-driven dHDP. By constructing a Lyapunov function candidate, we prove the uniformly ultimately boundedness (UUB) of the system states and the weights in the critic and the control policy networks. Consequently, we show the approximate control and cost-to-go function approaching Bellman optimality within a finite bound. We also illustrate how the event-driven dHDP algorithm works in comparison to the original time-driven dHDP.Parkinson's disease (PD) is known as an irreversible neurodegenerative disease that mainly affects the patient's motor system. Early classification and regression of PD are essential to slow down this degenerative process from its onset. In this article, a novel adaptive unsupervised feature selection approach is proposed by exploiting manifold learning from longitudinal multimodal data. Classification and clinical score prediction are performed jointly to facilitate early PD diagnosis. Specifically, the proposed approach performs united embedding and sparse regression, which can determine the similarity matrices and discriminative features adaptively. Meanwhile, we constrain the similarity matrix among subjects and exploit the l2,p norm to conduct sparse adaptive control for obtaining the intrinsic information of the multimodal data structure. An effective iterative optimization algorithm is proposed to solve this problem. We perform abundant experiments on the Parkinson's Progression Markers Initiative (PPMI) data set to verify the validity of the proposed approach. The results show that our approach boosts the performance on the classification and clinical score regression of longitudinal data and surpasses the state-of-the-art approaches.Plant leaves can be used to effectively detect plant diseases. However, the number of images of unhealthy leaves collected from various plants is usually unbalanced. It is difficult to detect diseases using such an unbalanced dataset. We used DoubleGAN (a double generative adversarial network) to generate images of unhealthy plant leaves to balance such datasets. We proposed using DoubleGAN to generate high-resolution images of unhealthy leaves using fewer samples. DoubleGAN is divided into two stages. In stage 1, we used healthy leaves and unhealthy leaves as inputs. First, the healthy leaf images were used as inputs for the WGAN (Wasserstein generative adversarial network) to obtain the pretrained model. Then, unhealthy leaves were used for the pretrained model to generate 64*64 pixel images of unhealthy leaves. In stage 2, a superresolution generative adversarial network (SRGAN) was used to obtain corresponding 256*256 pixel images to expand the unbalanced dataset. Finally, compared with images generated by DCGAN (Deep convolution generative adversarial network). The dataset expanded with DoubleGAN, the generated images are clearer than DCGAN, and the accuracy of plant species and disease recognition reached 99.80% and 99.53%, respectively. The recognition results are better than those from the original dataset.Targeted drug delivery has become an important direction in anticancer therapy research. In nanomachine-based targeted drug delivery, where a nanomachine containing anticancer drugs moves towards cancer cells and releases drugs to kill cancer cells, it should be noted that the nanomachine has limited space to carry drugs, and on the other hand the cancer cells have finite receptors to bind drugs. Therefore, to efficiently utilize cancer drugs, this paper aims to calculate and optimize drug release rate of nanomachines to produce a full drug response in local targeted drug delivery. A drug reception model reflecting ligand-receptors binding is established based on M/M/c/c queue. The minimum released concentration of drug molecules is derived from the minimum effective occupancy ratio of receptors according to the drug occupancy theory. We then derive the optimized release rates of each nanomachine from the minimum effective concentration of drug molecules according to diffusion channel response in terms of continuous emission of single nanomachine and multi-nanomachine, respectively.
Here's my website: https://www.selleckchem.com/products/wm-1119.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.