Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
This drug combination decreased L. major lesion size in mice earlier than individual monotherapy drug treatments and maintained all animals lesion free for up to 64 days after treatment cessation. In contrast, administration of subtherapeutic doses of tretazicar or amphotericin B as monotherapies resulted in no or partial lesion cures, respectively. We propose that tretazicar should be explored as a component of a systemic CL combination therapy and potentially for other diseases where amphotericin B is a first line therapy.Colloidal nanoparticles, such as gold nanoparticles (AuNPs), are promising materials for the delivery of hydrophilic drugs via the pulmonary route. The inhaled nanoparticle drug carriers primarily deposit in lung alveoli and interact with the alveolar surface known as lung surfactants. Therefore, it is vital to understand the interactions of nanocarriers with the surfactant layer. To understand the interactions at the molecular level, here we simulated model lung surfactant monolayers with phospholipid (PL)-wrapped AuNPs at the vacuum-water interface using coarse-grained molecular dynamics simulations. The PL-wrapped AuNPs quickly adsorbed into the surfactant layer, altered the structural properties of the monolayer, and at high concentrations initiated the compressed monolayer to collapse/buckle. Among the surfactant monolayer lipid components, cholesterol adsorbed to the AuNPs preferentially over PL species. The position of the adsorbed PL-AuNPs within the monolayer, and subsequent monolayer perturbation, vary depending on the monolayer phase, monolayer composition, and species of PL used as a ligand. Information provided by these molecular dynamic simulations helps to rationalize why some colloidal nanoparticles work better as nanocarriers than others and aid the design of new ones, to avoid biological toxicity and improve efficacy for pulmonary drug delivery.Carbon-based nanomaterials, such as carbon dots (CDs) and graphene (Gr), feature outstanding optical and electronic properties. Hence, their integration in optoelectronic and photonic devices is easier thanks to their low dimensionality and offers the possibility to reach high-quality performances. In this context, the combination of CDs and Gr into new nanocomposite materials CDs/Gr can further improve their optoelectronic properties and eventually create new ones, paving the way for the development of advanced carbon nanotechnology. In this work, we have thoroughly investigated the structural and emission properties of CDs deposited on single-layer and bilayer graphene lying on a SiO2/Si substrate. A systematic Raman analysis points out that bilayer (BL) graphene grown by chemical vapor deposition does not always respect the Bernal (AB) stacking, but it is rather a mixture of twisted bilayer (t-BL) featuring domains with different twist angles. Moreover, in-depth micro-photoluminescence measurements, combined with atomic force microscopy (AFM) morphological analysis, show that CD emission efficiency is strongly depleted by the presence of graphene and in particular is dependent on the number of layers as well as on the twist angle of BL graphene. Finally, we propose a model which explains these results on the basis of photoinduced charge-transfer processes, taking into account the energy levels of the hybrid nanosystem formed by coupling CDs with t-BL/SiO2.Perovskite oxide SrTiO3 can be electron-doped and exhibits high mobility by introducing oxygen vacancies or dopants such as Nb or La. A reversible after-growth tuning of high mobility carriers in SrTiO3 is highly desired for the applications in high-speed electronic devices. Here, we report the observation of tunable high-mobility electrons in layered perovskite/perovskite (Srn+1Ti n O3n+1/SrTiO3) heterostructure. By use of Srn+1Ti n O3n+1 as the oxygen diffusion barrier, the oxygen vacancy concentration near the interface can be reversibly engineered by high-temperature annealing or infrared laser heating. Because of the identical elemental compositions (Sr, Ti, and O) throughout the whole heterostructure, interfacial ionic intermixing is absent, giving rise to an extremely high mobility (exceeding 55000 cm2 V-1 s-1 at 2 K) in this type of oxide heterostructure. This layered perovskite/perovskite heterostructure provides a promising platform for reconfigurable high-speed electronic devices.Developing alternatives to noble-metal-based catalysts toward the oxygen reduction reaction (ORR) process plays a key role in the application of low-temperature fuel cells. Carbon-based, precious-metal-free electrocatalysts are of great interest due to their low cost, abundant sources, active catalytic performance, and long-term stability. They are also supposed to feature intrinsically high activity and highly dense catalytic sites along with their sufficient exposure, high conductivity, and high chemical stability, as well as effective mass transfer pathways. In this Review, we focus on carbon-based, precious-metal-free nanocatalysts with synergistic modulation of active-site species and their exposure, mass transfer, and charge transport during the electrochemical process. With this knowledge, perspectives on synergistic modulation strategies are proposed to push forward the development of Pt-free ORR catalysts and the wide application of fuel cells.Dynamic DNA origami has been employed for generating a rich repository of molecular nanomachines that are capable of sensing various cues and changing their conformations accordingly. The common design principle of the existing DNA origami nanomachines is that each dynamic DNA origami is programmed to transform in a specific manner, and the nanomachine needs to be redesigned to achieve a different form of transformation. However, it remains challenging to enable a multitude of controlled transformations in a single design of dynamic DNA nanomachine. TBK1/IKKε-IN-5 nmr Here we report a modular design method to programmatically tune the shapes of a DNA origami nanomachine. The DNA origami consists of small, modular DNA units, and the length of each unit can be selectively changed by toehold-mediated strand displacement. By use of different combinations of trigger DNA strands, modular DNA units can be selectively transformed, leading to the programmable reconfiguration of the overall dimensions and curvatures of DNA origami. The modular design of programmable shape transformation of DNA origami can find potential applications in more sophisticated molecular nanorobots and smart drug delivery nanocarriers.
Homepage: https://www.selleckchem.com/products/tbk1-IKKe-in-1-compound1.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team