Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
BACKGROUND The Weddell Seal (Leptonychotes weddelli) represents a remarkable example of adaptation to diving among marine mammals. This species is capable of diving > 900 m deep and remaining underwater for more than 60 min. A number of key physiological specializations have been identified, including the low levels of aerobic, lipid-based metabolism under hypoxia, significant increase in oxygen storage in blood and muscle; high blood volume and extreme cardiovascular control. These adaptations have been linked to increased abundance of key proteins, suggesting an important, yet still understudied role for gene reprogramming. In this study, we investigate the possibility that post-transcriptional gene regulation by microRNAs (miRNAs) has contributed to the adaptive evolution of diving capacities in the Weddell Seal. RESULTS Using small RNA data across 4 tissues (brain, heart, muscle and plasma), in 3 biological replicates, we generate the first miRNA annotation in this species, consisting of 559 high confidence, manually curated miRNA loci. Evolutionary analyses of miRNA gain and loss highlight a high number of Weddell seal specific miRNAs. Four hundred sixteen miRNAs were differentially expressed (DE) among tissues, whereas 80 miRNAs were differentially expressed (DE) across all tissues between pups and adults and age differences for specific tissues were detected in 188 miRNAs. mRNA targets of these altered miRNAs identify possible protective mechanisms in individual tissues, particularly relevant to hypoxia tolerance, anti-apoptotic pathways, and nitric oxide signal transduction. Novel, lineage-specific miRNAs associated with developmental changes target genes with roles in angiogenesis and vasoregulatory signaling. CONCLUSIONS Altogether, we provide an overview of miRNA composition and evolution in the Weddell seal, and the first insights into their possible role in the specialization to diving.BACKGROUND The premature activation of digestive enzyme zymogens within pancreatic acinar cells is an important early feature of acute pancreatitis. Supraphysiological concentrations of cholecystokinin (CCK) cause intrapancreatic zymogen activation and acute pancreatitis. Stimulation of vacuolar ATPase (vATPase) activity is required for zymogen activation in pancreatic acinar cells. Parkin, a multiprotein E3 ubiquitin ligase complex, promotes vATPase ubiquitination and degradation, which inhibits vATPase activity. Docosahexaenoic acid (DHA), an omega-3 fatty acid, exerts anti-inflammatory effects. It is reported to bind to G-protein coupled receptor 120 (GPR120) and GPR40. DHA induces the degradation of certain proteins by activating ubiquitin-proteasome system in various cells. This study aimed to investigate whether DHA induces Parkin and inhibits vATPase activity, resulting in zymogen inactivation in pancreatic acinar AR42J cells stimulated with cerulein, a CCK analog. RESULTS Cerulein induced the translocation of the cytosolic V1 domain (E subunit) of vATPase to the membrane, which indicated vATPase activation, and zymogen activation in AR42J cells. DHA suppressed the association of the vATPase with membranes, and zymogen activation (increased trypsin activity and amylase release) induced by cerulein. Pretreatment with a GPR120 antagonist AH-7614, a GPR40 antagonist DC260126, or an ubiquitination inhibitor PYR-41 reduced the effect of DHA on cerulein-induced zymogen activation. Treatment with PYR-41 reversed the DHA-induced decrease in vATPase activation in cerulein-treated cells. Furthermore, DHA increased the level of Parkin in membranes of cerulein-treated cells. CONCLUSIONS DHA upregulates Parkin which inhibits vATPase-mediated zymogen activation, via GPR120 and GPR40, in cerulein-stimulated pancreatic acinar cells.BACKGROUND The Brazilian endemic clone Pseudomonas aeruginosa ST277 carries important antibiotic resistance determinants, highlighting the gene coding for SPM-1 carbapenemase. However, the resistance and persistence of this clone is apparently restricted to the Brazilian territory. To understand the differences between Brazilian strains from those isolated in other countries, we performed a phylogenetic analysis of 47 P. aeruginosa ST277 genomes as well as analyzed the virulence and resistance gene profiles. Furthermore, we evaluated the distribution of genomic islands and assessed in detail the characteristics of the CRISPR-Cas immunity system in these isolates. RESULTS The Brazilian genomes presented a typical set of resistance and virulence determinants, genomic islands and a high frequency of the CRISPR-Cas system type I-C. LY303366 cost Even though the ST277 genomes are closely related, the phylogenetic analysis showed that the Brazilian strains share a great number of exclusively SNPs when compared to other ST277 genomes. We also observed a standard CRISPR spacers content for P. aeruginosa ST277, confirming a strong link between sequence type and spacer acquisition. Most CRISPR spacer targets were phage sequences. CONCLUSIONS Based on our findings, P. aeruginosa ST277 strains circulating in Brazil characteristically acquired In163 and PAGI-25, which can distinguish them from strains that do not accumulate resistance mechanisms and can be found on the Asian, European and North American continents. The distinctive genetic elements accumulated in Brazilian samples can contribute to the resistance, pathogenicity and transmission success that characterize the ST277 in this country.BACKGROUND Bayesian regression models are widely used in genomic prediction, where the effects of all markers are estimated simultaneously by combining the information from the phenotypic data with priors for the marker effects and other parameters such as variance components or membership probabilities. Inferences from most Bayesian regression models are based on Markov chain Monte Carlo methods, where statistics are computed from a Markov chain constructed to have a stationary distribution that is equal to the posterior distribution of the unknown parameters. In practice, chains of tens of thousands steps are typically used in whole-genome Bayesian analyses, which is computationally intensive. METHODS In this paper, we propose a fast parallelized algorithm for Bayesian regression models called independent intensive Bayesian regression models (BayesXII, "X" stands for Bayesian alphabet methods and "II" stands for "parallel") and show how the sampling of each marker effect can be made independent of samples for other marker effects within each step of the chain.
My Website: https://www.selleckchem.com/products/anidulafungin-ly303366.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team