Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
This work sheds new light on mechanistic insight into the BPA adsorption on carbon-based materials and develops a fit-for-purpose designed adsorbent toward green remediation of practical wastewater.Pulsed discharge plasma (PDP) induced complex catalysis for synergetic removal of thiamphenicol (TAP) was investigated using graphene-WO3-Fe3O4 nanocomposites. The prepared samples were characterized systematically in view of the structure and morphology, chemical bonding state, optical property, electrochemical property and magnetic property. Based on characterization and TAP degradation, the catalytic performance followed graphene-WO3-Fe3O4>graphene-WO3>WO3, and the highest removal efficiency and kinetic constant could reached 99.3% and 0.070 min-1, respectively. With increase of catalyst dosage, the removal efficiency firstly enhanced and then declined. Lower pH value was beneficial for TAP degradation. The prepared graphene-WO3-Fe3O4 owed higher stability and lower dissolution rate of iron ion. The rGO-WO3-Fe3O4 could decompose O3 and H2O2 into more ·OH in PDP system. The degradation intermediates were characterized by fluorescence spectrograph, LC-MS and IC. Based on the detected intermediates and discrete Fourier transform (DFT) analysis, degradation pathway of TAP was proposed. Besides, the toxicity of intermediates was predicted. Finally, catalytic degradation mechanism of TAP by PDP with graphene-WO3-Fe3O4 was summarized.Zeolites have attracted great interest as an adsorbent for the removal of volatile organic compounds. However, they suffer from low adsorption capacities due to severe diffusion limitations. Here, the effects of zeolite thickness and mesopore architecture on dynamic adsorption of p-xylene have been examined with a number of MFI-type zeolites with different crystal thicknesses and mesopore openings (i.e. open mesopore, constricted mesopore), which were prepared via hydrothermal synthesis with various organic structure-directing agents and post-synthetic desilication. The results showed that the breakthrough time of MFI zeolite could be improved by more than 2.3 times by reducing the crystal thickness of zeolite to a single-unit-cell dimension (∼2 nm). The time improvement can be attributed to the short diffusion path length that results in easy access of p-xylene to intracrystalline micropores and a large external crystal surface area. In the case of mesopore openings, the presence of constricted mesopores caused the mass transfer of p-xylene into zeolite adsorbents to slow down while open mesopores did not. Furthermore, mesopore opening is an important factor for the desorption behavior of p-xylene. Adsorbed p-xylene by mesoporous zeolites could be desorbed at lower temperatures only when facile diffusion to the exterior through mesoporous channels was possible.Soot nanoparticles (SNPs) are airborne contaminants that could potentially penetrate skin, but their aggregation after contact with sweat may lower their health risks. This study investigated SNP aggregation kinetics in 4 artificial sweat standards and 21 human sweat samples. Effects of sweat inorganic (NaCl, Na2HPO4, and NaH2PO4) and organic (L-histidine, lactic acid, and urea) constituents, pH, temperature, and concentrations were examined. Results showed that SNP aggregation rates in 4 standards followed American Association of Textile Chemists and Colorists (AATCC) > British Standard (EN) > International Standard Organization (ISO) pH 5.5 > ISO pH 8.0, and could be described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The aggregation rates increased with concentrations of SNPs, inorganic salts, L-histidine, and lactic acid, decreased with increasing pH and concentration of urea, and were weakly influenced by temperature. Systematic characterizations revealed SNP adsorption for organic sweat constituents. SNPs aggregated rapidly to ∼1000 nm in AATCC, but remained stable in ISO pH 8.0 and > 14/21 human sweat fluids over 20 min. The SNP aggregation rates correlated negatively with pH (r = -0.531*) and |ζ potential| (r = -0.464*) of human sweat samples. Sweat evaporation could promote aggregation of SNPs, hence lowering their potential harm via dermal exposure.Low-cost biochar adsorbent owning great potential for environmental remediation faces a bottleneck in application for its unsatisfied adsorption performance. Compared to the efforts on increasing adsorption capacity, improving adsorption speed which is important for treatment efficiency is often neglected. Herein, a hierarchical porous biochar (HPB) derived from shrimp shell was prepared and exhibited good adsorption capacity (Qm>300 mg/g) and fast adsorptive equilibrium (≤10 min) towards three typical aromatic organics, whose adsorption universality was further proved by two-way ANOVA analysis. Whereafter, model analysis demonstrated that, the adsorptive forms (mono- and multi-layers) on HPB depended on whether the contaminant is charged. Compared to the benzene-ring site of organics, the charged site contributed 5.13 times to adsorption promotion in monolayer but -0.49 times in inhibition for multilayers forms. Simultaneously, functional group sites contributed relatively weak (0.023 to 0.342 times only). Following structural control revealed that, hierarchical pore structure of HPB was the key for the fast adsorption speed, and highly graphitic structure was important for the high adsorption capacity. This study aims to provide an advanced biochar adsorbent, not only in adsorption capacity but also in adsorptive speed, and reveal the relationship between the structure and adsorption performance of biochar.By capturing intracellular microcystins (MCs) release from microalgal cell destruction and extracellular MCs oxidation, this study suggests a mathematical model explaining the simultaneous removal of microalgae and their toxins (MC-LR, -RR, and -YR) in non-thermal plasma (NTP) application. Selleck N-Ethylmaleimide Although the suggested model was built based on simplified kinetic assumptions, it can reasonably predict the behavior of extracellular MCs in a harvested/concentrated slurry of microalgae taken from a blooming site. After 24 h of NTP treatment, the experimental reduction of extracellular MCs was recorded up to ∼77 %. Regressions based on the experimental data reveal the degradation rate (8.60 d-1) and release rate (0.37 d-1) of MCs, which provides the essential physicochemical information about intracellular MCs release by microalgal cell destruction. Simulation results help to develop safe and useful control over the simultaneous treatment of harvested microalgal biomass and toxins. This study further demonstrates that the suggested model contributes to predicting the variation of MCs in mass management of microalgal biomass for sustainable utilization.
Here's my website: https://www.selleckchem.com/products/n-ethylmaleimide-nem.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team