NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Neuropsychological Thoughts, And then and Now: A new Gratitude in order to Oscar Marin.
Elevational range shifts of mountain species in response to climate change have profound impact on mountain biodiversity. However, current evidence indicates great controversies in the direction and magnitude of elevational range shifts across species and regions. Here, using historical and recent occurrence records of 83 plant species in a subtropical mountain, Mt. Gongga (Sichuan, China), we evaluated changes in species elevation centroids and limits (upper and lower) along elevational gradients, and explored the determinants of elevational changes. We found that 63.9% of the species shifted their elevation centroids upward, while 22.9% shifted downward. The changes in centroid elevations and range size were more strongly correlated with changes in lower than upper limits of species elevational ranges. The magnitude of centroid elevation shifts was larger than predicted by climate warming and precipitation changes. Our results show complex changes in species elevational distributions and range sizes in Mt. Gongga, and that climate change, species traits and climate adaptation of species all influenced their elevational movement. As Mt. Gongga is one of the global biodiversity hotspots, and contains many threatened plant species, these findings provide support to future conservation planning.Gross primary productivity (GPP) is a vital variable of the global carbon cycle, but the quantification of global GPP is subject to significant uncertainty due to the lack of direct observations at a global scale. Here, we evaluated and compared 45 GPP products in terms of their applicability to different vegetation types at various spatiotemporal scales. The results show that 44 GPP products and obsGPP (Model Tree Ensemble GPP derived from observations and named obsGPP) have similar global patterns with correlation coefficients greater than 0.8 except for NGT, where GOSIF, RS, and BESS are prominent. GPP products have the greatest variation in Suriname, with a mean 75th and 25th percentile difference value of 0.4748 (normalized), and we recommend RS, SDGVM and LPJ-wsl as they provide GPP estimates close to the average GPP. In terms of seasonal estimations, considerable disagreement occurs among the GPP products in winter, with a range from 118.76 to 314.95 gC/m2/season, among which JULES has the closest GPP value to the average GPP estimation. For studies concerning vegetation types preference is given to the LUE average GPP. The 45 GPP products are more consistent on grasslands but, have obvious differences for savannas. All GPP products have their own specific spatiotemporal scales, such as global or national scales or different seasons and different vegetation types (forest, grasslands, etc.). This study provides guidelines for selecting GPP products.Water scarcity has become a major threat to sustainable development under climate change. To reduce the population exposure to water scarcity and improve universal access to safe drinking water are important targets of the Sustainable Development Goal (SDG) 6 in the near future. This study aims to examine the potential of applying adaptive inner-basin water allocation measures (AIWAM), which were not explicitly considered in previous studies, for mitigating water scarcity in the future period (2020-2050). By incorporating AIWAM in water scarcity assessment, nonagricultural water uses are assumed to have high priority over agricultural water use and thus would receive more water supply. Results show that global water deficit is projected to be ~3241.9 km3/yr in 2050, and severe water scarcity is mainly found in arid and semi-arid regions, e.g. Western US, Northern China, and the Middle East. Future warming climate and socioeconomic development tend to aggravate global water scarcity, particularly in Northern Africa, Central Asia, and the Middle East. The application of AIWAM could significantly mitigate water scarcity for nonagricultural sectors by leading to a decrease of global population subject to water scarcity by 12% in 2050 when compared to that without AIWAM. However, this is at the cost of reducing water availability for agricultural sector in the upstream areas, resulting in an increase of global irrigated cropland exposed to water scarcity by 6%. SB415286 Nevertheless, AIWAM provides a useful scenario that helps design strategies for reducing future population exposure to water scarcity, particularly in densely populated basins and regions. Our findings highlight increasing water use competition across sectors between upstream and downstream areas, and the results provide useful information to develop adaptation strategies towards sustainable water management.An aerosol mass spectrometer (AMS) was used to measure the chemical composition of non-refractory submicron particles (NR-PM1) in Beijing from 2012 to 2013. The average concentration of NR-PM1 was 56 μg·m-3, with higher value of 106 μg·m-3 when Beijing was influenced by air masses from south in winter. Organics was the primary chemical component with a concentration of 26 μg·m-3, accounting for 46% of the total NR-PM1. The ratio of NO3-/SO42- was utilized to identify the relative contribution of stationary and traffic related resource to PM pollution. When NR-PM1 concentration was between 50 and 200 μg·m-3, NO3-/SO42-was larger than 1, indicating traffic resource contributed more than stationary resource during the aerosol growth. A new method was developed to calculate aerosol extinction coefficient (σ) as a function of aerosol optical depth (AOD) and the mixing layer height (MLH). σ derived from the new method showed a statistically significant correlation with that obtained from traditional method, which was calculated using visibility (y = 0.99x + 85 R2 = 0.69). Multiple linear regressions in dependence of chemical component were performed to evaluate light extinction apportionment. Under the overall condition, NR-PM1 contributed about 88% to the whole aerosol light extinction; organics, ammonium chloride, ammonium nitrate, ammonium sulfate, black carbon contributed 30%, 6%, 24%, 26% and 6% of the NR-PM1 light extinction, respectively. By further comparing the light extinction apportionment under the different dominated air masses, we concluded that the organics and ammonium sulfate contributed more in polluted days (36% and 23%) than that in clean days (21% and 21%). Mass ratio (MR) between NR-PM1 and black carbon (MR = massNR-PM1/massBC) was used to identify black carbon aging degree, and the result showed that aerosol mass extinction efficiency increased rapidly after MR reached about 7 in the process of black carbon aging.
My Website: https://www.selleckchem.com/products/sb-415286.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.