Notes
![]() ![]() Notes - notes.io |
In the presence of the drug, the closed-state inactivation was significantly accelerated, and the percentage of inactivated channels was increased. Altogether, our findings indicate that riluzole inhibits Kv4.2 channels mainly affecting the closed and closed-inactivated states.Over the years, extensive studies on erythrocytes, also known as red blood cells (RBCs), as a mechanism for drug delivery, have been explored mainly because the cell itself is the most abundant and has astonishing properties such as a long life span of 100-120 days, low immunogenicity, good biocompatibility, and flexibility. There are various types of RBC-based systems for drug delivery, including those that are genetically engineered, non-genetically engineered RBCs, as well as employing erythrocyte as nanocarriers for drug loading. Although promising, these systems are still in an early development stage. In this review, we aimed to highlight the development of biomimicking RBC-based drug and vaccine delivery systems, as well as the loading methods with illustrative examples. Drug-erythrocyte associations will also be discussed and highlighted in this review. We have highlighted the possibility of exploiting erythrocytes for the sustained delivery of drugs and vaccines, encapsulation of these biological agents within the erythrocyte or coupling to the surface of carrier erythrocytes, and provided insights on genetically- and non-genetically engineered erythrocytes-based strategies. Erythrocytes have been known as effective cellular carriers for therapeutic moieties for several years. Herein, we outline various loading methods that can be used to reap the benefits of these natural carriers. It has been shown that drugs and vaccines can be delivered via erythrocytes but it is important to select appropriate methods for increasing the drug encapsulated or conjugated on the surface of the erythrocyte membrane. The outlined examples will guide the selection of the most effective method as well as the impact of using erythrocytes as delivery systems for drugs and vaccines.Cerebral ischemia constitutes the most frequent type of cerebrovascular disease. The reduction of blood supply to the brain initiates the ischemic cascade starting from ionic imbalance to subsequent glutamate excitotoxicity, neuroinflammation and oxidative stress, eventually causing neuronal death. Previously, the authors have demonstrated the in vitro cytoprotective and antioxidant effects of a new arylidene malonate derivative, KM-34, against oxidizing agents like hydrogen peroxide, glutamate or Fe3+/ascorbate. Here, we examined for the first time the neuroprotective effect of KM-34 on ischemia/reperfusion models. In vitro, treatment with 10 and 50 μM KM-34 reduced the cellular death (propidium iodide incorporation) induced by oxygen glucose deprivation (OGD) in rat organotypic hippocampal slices cultures. In vivo, stroke was induced in male Wistar rats through middle cerebral artery occlusion (MCAO), followed by 23 h of reperfusion. KM-34 was orally administered 105 min after MCAO onset. We noticed that 1 mg/kg KM-34 reduced infarct volume and neurological score, and increased the latency to fall in the Hanging Wire test compared to vehicle-treated ischemic animals. https://www.selleckchem.com/products/bay-2416964.html While ischemic and sham-operated groups showed similar horizontal locomotor activity, vertical counts decreased after MCAO, suggesting that vertical movements are more sensitive to the ischemic injury. Treatment with KM-34 also alleviated the mitochondrial impairment (ROS generation, swelling and membrane potential dissipation) induced by transient MCAO but not significant alterations were found in oxidative stress parameters. Overall, the study provides preclinical evidences confirming the neuroprotective effects of a novel synthetic molecule and paved the way for future investigations regarding its therapeutic potential against brain ischemia/reperfusion injury.Different subtypes of GABAA (gamma-aminobutyric acid A) receptors, through their specific regional and cellular localization, are involved in the manifestation of various functions, both at the central and peripheral levels. We hypothesized that various non-neuronal GABAA receptors are expressed on blood vessels, through which positive allosteric modulators of GABAA receptors exhibit vasodilatory effects. This study involved two parts one to determine the presence of α1-6 subunit GABAA receptor mRNAs in the rat thoracic aorta, and the other to determine the vasoactivity of the various selective and non-selective positive GABAA receptor modulators zolpidem (α1-selective), XHe-III-074 (α4-selective), MP-III-022 (α5-selective), DK-I-56-1 (α6-selective), SH-I-048A and diazepam (non-selective). Reverse transcription-polymerase chain reaction (RT-PCR) analysis data demonstrated for the first time the expression of α1, α2, α3, α4 and α5 subunits in the rat thoracic aorta tissue. Tissue bath assays on isolated rat aortic rings revealed significant vasodilatory effects of diazepam, SH-I-048A, XHe-III-074, MP-III-022 and DK-I-56-1, all in terms of achieved relaxations (over 50% of relative tension decrease), as well as in terms of preventive effects on phenylephrine (PE) contraction. Diazepam was the most efficient ligand in the present study, while zolpidem showed the weakest vascular effects. In addition, diazepam-induced relaxations in the presence of antagonists PK11195 or bicuculline were significantly reduced (P less then 0.001 and P less then 0.05, respectively) at lower concentrations of diazepam (10-7 M and 3 × 10-7 M). The present work suggests that the observed vasoactivity is due to modulation of "vascular" GABAA receptors, which after further detailed research may provide a therapeutic target.The drug resistance of cancer cells has become one of the biggest obstacles of effective anticancer treatments. Adipocytes produce plenty of cytokines (also known as adipokines), which remarkably affect the drug resistance exhibited by cancer cells. Different adipokines (leptin, visfatin, resistin, adiponectin, Interleukin 6, and tumor necrosis factor α) can induce drug resistance in different cancer cells by various functional mechanisms. This phenomenon is of great interest in pharmacological anti-cancer studies since it indicates that in the cancers with adipocyte-rich microenvironment, all adipokines join together to assist cancer cells to survive by facilitating drug resistance. Studies on adipokines contribute to the development of novel pharmacological strategies for cancer therapy if their roles and molecular targets are better understood. The review will elucidate the roles and the underlying mechanisms of adipokines in drug resistance, which may be of great significance for revealing new strategies for cancer treatment.
Homepage: https://www.selleckchem.com/products/bay-2416964.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team