NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Shall we be Prepared for Mobile Treatment to take care of Cerebrovascular accident?
This review may result in a great guidance of noncoding RNAs as biomarkers for ACS in clinical practice. Copyright © 2020 Lijie Wang and Yuanzhe Jin.Objective To investigate the association between exposure to general anesthesia and the development of Alzheimer's disease (AD) and dementia by reviewing and integrating the evidence from epidemiological studies published to date. Methods We searched MEDLINE, EMBASE, and Google Scholar to identify all relevant articles up to April 2018 reporting the risk of AD/dementia following exposure to general anesthesia and finally updated in February 2020. We included patients older than 60 or 65 years who had not been diagnosed with dementia or AD before the study period. The overall pooled effect size (ES) was evaluated with a random-effect model. Subgroup analyses were conducted and possibility of publication bias was assessed. Results A total of 23 studies with 412253 patients were included in our analysis. A statistically significant positive association between exposure to general anesthesia and the occurrence of AD was detected in the overall analysis (pooled ES = 1.11, 95%confidence interval = 1.07-1.15), but with substantial heterogeneity (p χ 2 less then 0.001, I 2 = 79.4). Although the overall analysis revealed a significant association, the results of the subgroup analyses were inconsistent, and the possibility of publication bias was detected. Conclusion s. This meta-analysis demonstrated a significant positive association between general anesthesia and AD. However, considering other results, our meta-analysis must be interpreted with caution. Particularly, it should be considered that it was nearly impossible to discriminate the influence of general anesthesia from the effect of surgery itself on the development of AD. Further, large-scale studies devised to reduce the risk of bias are needed to elucidate the evidence of association between general anesthesia and AD. Trial registration. PROSPERO International prospective register of systematic reviews CRD42017073790. Copyright © 2020 Je Jin Lee et al.Objective This study is aimed at investigating the predictive value of CENPA in hepatocellular carcinoma (HCC) development. Methods Using integrated bioinformatic analysis, we evaluated the CENPA mRNA expression in tumor and adjacent tissues and correlated it with HCC survival and clinicopathological features. A Cox regression hazard model was also performed. Results CENPA mRNA was significantly upregulated in tumor tissues compared with that in adjacent tissues, which were validated in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) series (all P less then 0.01). In the Kaplan-Meier plotter platform, the high level of CENPA mRNA was significantly correlated with overall survival (OS), disease-free survival (DFS), recurrence-free survival (RFS), and progression-free survival (PFS) in HCC patients (all log rank P less then 0.01). For validation in GSE14520 and pan-TCGA dataset, HCC patients with CNEPA mRNA overexpression had poor OS compared with those with low CENPA mRNA (log rank P = 0.025 and P less then 0.0001, respectively), and those with high CENPA had poor DFS in TCGA (log rank P = 0.0001). Additionally, CENPA mRNA were upregulated in HCC patients with alpha-fetoprotein (AFP) elevation, advanced TNM stage, larger tumor size, advanced AJCC stage, advanced pathology grade, and vascular invasion (all P less then 0.05). A Cox regression model including CENPA, OIP5, and AURKB could predict OS in HCC patients effectively (AUC = 0.683). Conclusion Overexpressed in tumors, CENPA might be an oncogenic factor in the development of HCC patients. Copyright © 2020 Yuan Zhang et al.Crocins, enriched in Gardenia jasminoides fruits, have a pharmacological activity against central nervous system diseases, cardiovascular diseases, and cancer cell growth. The biosynthesis of crocins has been widely explored, but its regulatory mechanism remains unknown. Here, the basic helix-loop-helix (bHLH) transcription factors related to crocin biosynthesis were systematically identified on the basis of the genome of G. jasminoides. A total of 95 GjbHLH transcription factor genes were identified, and their phylogenetic analysis indicated that they could be classified into 23 subfamilies. The combination of gene-specific bHLH expression patterns, the coexpression analysis of biosynthesis genes, and the analysis of promoter sequences in crocin biosynthesis pathways suggested that nine bHLHs in G. jasminoides might negatively regulate crocin biosynthesis. This study laid a foundation for understanding the regulatory mechanism of crocin biosynthesis and the improvement and breeding of G. jasminoides varieties. Copyright © 2020 Ya Tian et al.This study investigates the impact of reduced transmural conduction velocity (TCV) on output parameters of the human heart. In a healthy heart, the TCV contributes to synchronization of the onset of contraction in individual layers of the left ventricle (LV). However, it is unclear whether the clinically observed decrease of TCV contributes significantly to a reduction of LV contractility. The applied three-dimensional finite element model of isovolumic contraction of the human LV incorporates transmural gradients in electromechanical delay and myocyte shortening velocity and evaluates the impact of TCV reduction on pressure rise (namely, (dP/dt)max) and on isovolumic contraction duration (IVCD) in a healthy LV. The model outputs are further exploited in the lumped "Windkessel" model of the human cardiovascular system (based on electrohydrodynamic analogy of respective differential equations) to simulate the impact of changes of (dP/dt)max and IVCD on chosen systemic parameters (ejection fraction, LV power, cardiac output, and blood pressure). find more The simulations have shown that a 50% decrease in TCV prolongs substantially the isovolumic contraction, decelerates slightly the LV pressure rise, increases the LV energy consumption, and reduces the LV power. These negative effects increase progressively with further reduction of TCV. In conclusion, these results suggest that the pumping efficacy of the human LV decreases with lower TCV due to a higher energy consumption and lower LV power. Although the changes induced by the clinically relevant reduction of TCV are not critical for a healthy heart, they may represent an important factor limiting the heart function under disease conditions. Copyright © 2020 Jiří Vaverka et al.
Read More: https://www.selleckchem.com/products/ca-170.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.