Notes
![]() ![]() Notes - notes.io |
The aim of this study was to assess associations between performance in the timed up-and-go (TUG) and six-minute walk distance (6MWD) with physiological characteristics in young and old healthy adults. Thereto, we determined TUG, 6MWD, normalised jump power, centre of pressure displacement during 1-leg standing, forced expiratory volume in 1 s, percentage of age-predicted maximal heart rate (HR%) and height in 419 healthy young (men 23.5 ± 2.8 years, women 23.2 ± 2.9 years) and old (men 74.6 ± 3.2 years, women 74.1 ± 3.2 years) adults. Normalised jump power explained 8% and 19% of TUG in young (p = 0.025) and older men (p less then 0.001), respectively. When fat mass percentage and age were added to normalised jump power, 30% of TUG was explained in older men (R2adj = 0.30, p less then 0.001 to 0.106). Appendicular lean muscle mass percentage (ALM%) and age were the best determinants of TUG for older women (R2adj = 0.16, p less then 0.001 to 0.01). HR% explained 17-39% of 6MWD across all groups (R2adj = 0.17 to 39, p less then 0.001). In conclusion, in men, jump power was a key determinant for TUG, while in old women only it was the ALM%. As HR% was the most important determinant of 6MWD, motivational bias needs to be considered in the interpretation of this test.This paper presents a user-centered methodology to co-design and co-evaluate wearables that has been developed following a research-through design methodology. It has been based on the principles of human-computer interaction and on an empirical case entitled "Design and Development of a Low-Cost Wearable Glove to Track Forces Exerted by Workers in Car Assembly Lines" published in Sensors. Insights from both studies have been used to develop the wearable co-design domino presented in this study. The methodology consists of different design stages composed of an ideation stage, digital service development and test stages, hardware development and test stage, and a final test stage. The main conclusions state that it is necessary to maintain a close relationship between human factors and technical factors when designing wearable. Additionally, through the several studies, it has been concluded that there is need of different field experts that should co-design and co-evaluate wearable iteratively and involving users from the beginning of the process.Zerovalent iron nanotechnologies are widely used for groundwater remediation and increasingly considered for advance oxidation treatment in drinking water applications. Iron nanoparticles have been detected in drinking water systems and considered for food fortification; therefore, the potential for human exposure through ingestion can be a concern. This study aimed to assess whether ingestion of iron nanoparticles from drinking water could be detected through flavor perception using in vitro salivary lipid oxidation as an indicator for metallic flavor perception. Ten female subjects, aged 29-59 years, donated saliva samples for use in the in vitro experiments. Test samples consisted of 11 mixture of saliva and bottled drinking water (control) and three treatment solutions, spiked with ferrous sulfate, stabilized zerovalent iron nanoparticles (nZVI), and an aggregated/microsized suspension of mixed zerovalent iron and microsized suspension of iron and iron oxide metal powder, (mZVI). Upon mixing, samples were subjected to 15 min incubation at 37 °C to resemble oral conditions. Salivary lipid oxidation (SLO) was measured in all samples as micromoles of thiobarbituric acid reactive substances (TBARS)/mg Fe. Exposure to iron in all three forms induced significant amount of SLO in all treatment samples as compared to the control (p less then 0.0001). The mean SLO levels were the highest in the ferrous treatment, followed by nZVI and mZVI treatments; the differences in the mean SLO levels were significant (p less then 0.05). The findings indicate that oral exposure to stabilized ZVI nanoparticles may induce sensory properties different from that of ferrous salt, likely predictive of diminished detection of metallic flavor by humans.Pressure injuries represent a major concern in many nations. These wounds result from prolonged pressure on the skin, which mainly occur among elderly and disabled patients. If retrieving quantitative information using invasive methods is the most used method, it causes significant pain and discomfort to the patients and may also increase the risk of infections. Hence, developing non-intrusive methods for the assessment of pressure injuries would represent a highly useful tool for caregivers and a relief for patients. Traditional methods rely on findings retrieved solely from 2D images. Thus, bypassing the 3D information deriving from the deep and irregular shape of this type of wounds leads to biased measurements. In this paper, we propose an end-to-end system which uses a single 2D image and a 3D mesh of the pressure injury, acquired using the Structure Sensor, and outputs all the necessary findings such as external segmentation of the wound as well as its real-world measurements (depth, area, volume, major axis and minor axis). More specifically, a first block composed of a Mask RCNN model uses the 2D image to output the segmentation of the external boundaries of the wound. Then, a second block matches the 2D and 3D views to segment the wound in the 3D mesh using the segmentation output and generates the aforementioned real-world measurements. Experimental results showed that the proposed framework can not only output refined segmentation with 87% precision, but also retrieves reliable measurements, which can be used for medical assessment and healing evaluation of pressure injuries.Security of the Internet of Things is a crucial topic, due to the criticality of the networks and the sensitivity of exchanged data. In this paper, we target the Message Queue Telemetry Transport (MQTT) protocol used in IoT environments for communication between IoT devices. Selleckchem Setanaxib We exploit a specific weakness of MQTT which was identified during our research, allowing the client to configure the behavior of the server. In order to validate the possibility to exploit such vulnerability, we propose SlowITe, a novel low-rate denial of service attack aimed to target MQTT through low-rate techniques. We validate SlowITe against real MQTT services, considering both plain text and encrypted communications and comparing the effects of the threat when targeting different daemons. Results show that the attack is successful and it is able to exploit the identified vulnerability to lead a DoS on the victim with limited attack resources.
Read More: https://www.selleckchem.com/products/gkt137831.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team