Notes
Notes - notes.io |
rner satisfaction and sustainability. The curriculum exhibits high educational impact and could be a valuable adjunctive training for other non-OBGYN physicians who may need to provide OBGYN care in military environments.AT-rich interactive domain 1A (ARID1A), which is a tumor suppressor gene, is frequently mutated in Epstein-Barr virus-positive gastric cancer [EBV (+) GC]. While most ARID1A mutations in GC are truncating mutations, leading to loss of ARID1A protein expression, epigenetic modifications appear to contribute to ARID1A deficiency in EBV (+) GC harboring wild-type ARID1A. Based on the significant role of epigenetic modifications in EBV (+) GC that contributes to ARID1A deficiency, the methylation status of ARID1A was evaluated in EBV-infected cells and GC patients using a publicly available microarray and the Cancer Genome Atlas (TCGA) database. EBV-encoded miRNAs that potentially target ARID1A were identified as an additional epigenetic modulator by computational prediction. In vitro experiments were conducted to evaluate how EBV-encoded miRNAs affected ARID1A mRNA and protein levels. In clinical GC samples, the expression of predicted miRNAs and ARID1A and the mutation status of ARID1A was evaluated. As results, ARID1A was not hypermethylated in EBV (+) GC samples or EBV-infected GC cells. EBV infection did not alter ARID1A mRNA levels, suggesting that ARID1A protein deficiency was caused by post-transcriptional gene silencing in ARID1A-WT EBV (+) GC. Overexpression of miR-BART11-3p and miR-BART12, which were identified as miRNAs that potentially bind ARID1A, suppressed ARID1A protein expression in MKN7 and NCI-N87 cells. Highly expressed miR-BART11-3p and miR-BART12 were correlated with decreased ARID1A levels in GC tumors which did not harbor ARID1A mutations. The present findings revealed that ARID1A expression was epigenetically regulated by miR-BART11-3p and miR-BART12 in EBV (+) GC.
Running-related injuries are common in distance runners. Strength training is used for performance enhancement and injury prevention. However, the association between maximal strength and distance-running biomechanics is unclear.
To determine the relationship between maximal knee- and hip-extensor strength and running biomechanics previously associated with injury risk.
Cross-sectional study.
Research laboratory.
A total of 36 collegiate distance runners (26 men, 10 women; age = 20.0 ± 1.5 years, height = 1.74 ± 0.09 m, mass = 61.97 ± 8.26 kg).
Strength was assessed using the 1-repetition maximum (1RM) back squat and maximal voluntary isometric contractions of the knee extensors and hip extensors. Three-dimensional running biomechanics were assessed overground at a self-selected speed. Running variables were the peak instantaneous vertical loading rate; peak forward trunk-lean angle; knee-flexion, internal-rotation, and -abduction angles and internal moments; and hip-extension, internal-rotation, unning biomechanics associated with the development of knee-related injuries.
Greater 1RM back-squat strength was weakly associated with a larger peak knee-flexion angle and smaller knee internal-rotation angle and moment in collegiate distance runners. Runners who are weaker in the back-squat exercise may exhibit running biomechanics associated with the development of knee-related injuries.
Preventing medical errors is crucial, especially during crises like the COVID-19 pandemic. Failure Modes and Effects Analysis (FMEA) is the most widely used prospective hazard analysis in healthcare. FMEA relies on brainstorming by multi-disciplinary teams to identify hazards. This approach has two major weaknesses significant time and human resource investments, and lack of complete and error-free results.
To introduce the algorithmic prediction of failure modes in healthcare (APFMH) and to examine whether APFMH is leaner in resource allocation in comparison to the traditional FMEA and whether it ensures the complete identification of hazards.
The patient identification during imaging process at the emergency department of Sheba Medical Center was analyzed by FMEA and APFMH, independently and separately. check details We compared between the hazards predicted by APFMH method and the hazards predicted by FMEA method; the total participants' working hours invested in each process and the adverse events, categorized as (P less then 0.0001) and is leaner in resources than the traditional FMEA. APFMH is suggested as an alternative to FMEA since it is leaner in time and human resources, ensures more complete hazard identification and is especially valuable during crisis time, when new protocols are often adopted, such as in the current days of the COVID-19 pandemic.A variety of dimensions (lengths and widths) of elongate mineral particles (EMPs) have been proposed as being related to health effects. In this paper, we develop a mathematical approach for deriving numerical conversion factors (CFs) between these EMP exposure metrics and applied it to the Minnesota Taconite Health Worker study which contains 196 different job exposure groups (28 similar exposure groups times 7 taconite mines). This approach comprises four steps for each group (i) obtain EMP dimension information using ISO-TEM 10312/13794 analysis; (ii) use bivariate lognormal distribution to characterize overall EMP size distribution; (iii) use a Bayesian approach to facilitate the formation of the bivariate lognormal distribution; (iv) derive conversion factors between any pair of EMP definitions. The final CFs allow the creation of job exposure matrices (JEMs) for alternative EMP metrics using existing EMP exposures already characterized according to the National Institute of Occupational Safety and Health (NIOSH)-defined EMP exposure metric (length >5 µm with an aspect ratio ≥3.0). The relationships between the NIOSH EMP and other EMP definitions provide the basis of classification of workers into JEMs based on alternate definitions of EMP for epidemiological studies of mesothelioma, lung cancer, and non-malignant respiratory disease.CellMiner Cross-Database (CellMinerCDB, discover.nci.nih.gov/cellminercdb) allows integration and analysis of molecular and pharmacological data within and across cancer cell line datasets from the National Cancer Institute (NCI), Broad Institute, Sanger/MGH and MD Anderson Cancer Center (MDACC). We present CellMinerCDB 1.2 with updates to datasets from NCI-60, Broad Cancer Cell Line Encyclopedia and Sanger/MGH, and the addition of new datasets, including NCI-ALMANAC drug combination, MDACC Cell Line Project proteomic, NCI-SCLC DNA copy number and methylation data, and Broad methylation, genetic dependency and metabolomic datasets. CellMinerCDB (v1.2) includes several improvements over the previously published version (i) new and updated datasets; (ii) support for pattern comparisons and multivariate analyses across data sources; (iii) updated annotations with drug mechanism of action information and biologically relevant multigene signatures; (iv) analysis speedups via caching; (v) a new dataset download feature; (vi) improved visualization of subsets of multiple tissue types; (vii) breakdown of univariate associations by tissue type; and (viii) enhanced help information.
Read More: https://www.selleckchem.com/products/mpi-0479605.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team