Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The present study aims to develop the new composite films by blending Konjac glucomannan (KGM) and pullulan with different ratios and concentrations. The structural, physical, barrier properties and morphology of the films were investigated and the practical use on strawberry preservation at 4 ± 1 °C, 85 %±5% relative humidity (RH) and 25 ± 1 °C, 55 %±5% RH was evaluated. Fourier transform infrared and scanning electron microscopy indicated the well-dispersion of film matrix was due to the good compatibility of the components. The mechanical and barrier properties of blend films were markedly enhanced although the light transmittance of which were decreased slightly. Tivozanib It was a further proof that 1% (w/v) KGM/pullulan (with the mass ratio of 21) blend film could decrease the weight loss significantly and maintain the titratable acidity, soluble solids and skin color on the strawberry preservation, thus improving the qualities of strawberries during storage time and offering a potential alternative to synthetic materials.The present work deals with using thermal aggregation of spray drying to achieve uniform structuring of cellulose nanocrystals (CNC) with carbon nanotubes (CNT), for obtaining rough annular microparticles with hierarchical dual dimensions. The structure and characteristics of CNC are crucial to microparticle assembly and superhydrophobic modification. The polyurethane (PU) was used to enhance the firmness of microparticles, during thermal aggregation. The investigated CNC/CNT/PU microparticles showed excellent separation ability for water-in-oil emulsions. Moreover, an abrasion-resistant superhydrophobic coating that combined fast and intelligent water-removing, electrical-conductive and antibacterial functions was manufactured through simple spray coating, which profited from effective role of CNT in excellent conversion of light to heat, as well as its thermal, electrical conductivity and antibacterial properties.Hyaluronic acid (HA) and chondroitin sulfate (CS) are valuable bioactive polysaccharides that have been highly used in biomedical and pharmaceutical applications. Extensive research was done to ensure their efficient extraction from marine and terrestrial by-products at a high yield and purity, using specific techniques to isolate and purify them. In general, the cartilage is the most common source for CS, while the vitreous humor is main used source of HA. The developed methods were based in general on tissue hydrolysis, removal of proteins and purification of the target biopolymers. They differ in the extraction conditions, enzymes and/or solvents used and the purification technique. This leads to specific purity, molecular weight and sulfation pattern of the isolated HA and CS. This review focuses on the analysis and comparison of different extraction and purification methods developed to isolate these valuable biopolymers from marine and terrestrial animal by-products.We have investigated the structural properties, vibrational spectra, and electronic band structures of crystalline cellulose allomorphs and chemically modified cellulose with quantum chemical methods. The electronic band gaps of cellulose allomorphs Iα, Iβ, II, and III1 lie in the range of 5.0 to 5.6 eV. We show that extra states can be created in the band gap of cellulose by chemical modification. Experimentally feasible amidation of cellulose Iβ with aniline or 4,4' diaminoazobenzene creates narrow bands in the cellulose band gap, reducing the difference between the occupied and empty states to 4.0 or 1.8 eV, respectively. The predicted states 4,4'diaminoazobenzene-modified cellulose Iβ fall in the visible spectrum, suggesting uses in optical applications.Methotrexate-loaded phytic acid-chitosan nanoparticles were synthesized by ionic gelation assisted by high-intensity sonication. The nanoparticles were characterized by particle size, polydispersity index, zeta potential (ZP) and encapsulation efficiency. Their physical stability was evaluated at 4 °C and 40 °C, whereas the in-vitro methotrexate release was assessed at pH 7.4. The data were heuristically fit to first-order, Higuchi, Peppas-Sahlin and Korsmeyer-Peppas models of release kinetics. Anticancer activity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay on HT-29 human colon adenocarcinoma cells. Physicochemical analysis showed that the nanoparticles presented positive ZP values, sizes less than less then 300 nm and low polydispersity, except for systems formed with low amplitude sonication. The nanoparticles exhibited an adequate physical stability and a capability to modify methotrexate release by a non-Fickian mechanism, resulting in a more pronounced cytotoxic effect than the free drug on HT-29 human colon adenocarcinoma cells.Glycogen is a branched glucose polymer involved in sustaining blood glucose homeostasis. Liver glycogen comprises α particles (up to 300 nm in diameter) made of joined β particles (∼20 nm in diameter). Glycogen α particles in a mouse model for diabetes are molecularly fragile, breaking down into smaller β particles more readily than in healthy mice. Glycogen phosphorylase (GP), a rate-limiting enzyme in glycogen degradation, is overexpressed in diabetic mice. This study shows that Metformin and Berberine, two common drugs, two common drugs used to treat diabetes, are able to revert the liver glycogen of diabetic mice to the stable structure seen in non-diabetic mice. It is also shown that these drugs reduce the GP level via the cAMP/PKA signaling pathway in diabetic livers and decrease the affinity of GP with the glycogen of db/db mice. These effects of these drugs may slow down the degradation of liver glycogen and improve glucose homeostasis.Poor induction of mucosal immunity in the intestines by current Salmonella vaccines is a challenge to the poultry industry. We prepared and tested an oral deliverable Salmonella subunit vaccine containing immunogenic outer membrane proteins (OMPs) and flagellin (F) protein loaded and F-protein surface coated chitosan nanoparticles (CS NPs) (OMPs-F-CS NPs). The OMPs-F-CS NPs had mean particle size distribution of 514 nm, high positive charge and spherical in shape. In vitro and in vivo studies revealed the F-protein surface coated CS NPs were specifically targeted to chicken immune cells. The OMPs-F-CS NPs treatment of chicken immune cells upregulated TLRs, and Th1 and Th2 cytokines mRNA expression. Oral delivery of OMPs-F-CS NPs in birds enhanced the specific systemic IgY and mucosal IgA antibodies responses as well as reduced the challenge Salmonella load in the intestines. Thus, user friendly oral deliverable chitosan-based Salmonella vaccine for poultry is a viable alternative to current vaccines.
My Website: https://www.selleckchem.com/products/AV-951.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team