Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Chemical hydrogen storage ammonia borane has attracted extensive attention as a method of efficient utilization of hydrogen energy. The high-efficiency catalysts are the main factor restricting the hydrogen production of ammonia borane. In this paper, the synergistic effect of Co and CoOx supported on graphene (named Co-CoOx @GO-II) promotes the efficient hydrogen production of ammonia borane, and its catalytic hydrogen production rate can reach 5813 mL min-1 gCo-1 at 298 K, the corresponding TOF is 15.33 min-1 . After five stability tests, Co-CoOx @GO-II maintained 65% of its original catalytic performance. The synergy of metal and metal oxide and the defects in the atomic arrangement ensure the catalytic activity, the large specific surface area of graphene ensures the dispersion and fixation. This strategy may provide a possibility to design high-performance transition metal catalysts.
The leaf surface microstructure can greatly influence predator feeding behavior. However, its effects on predator oviposition preference, which is crucial for arthropod fitness at the population level, are largely unknown. This study aimed to test leaf discs and plants of five common host plant species of Bemisia tabaci, including Chinese kale, cotton, cucumber, eggplant, and sweetpotato, to determine the oviposition preference and offspring and adult performance of the whitefly predator Serangium japonicum. Cannibalism risk, attachment force, microstructure of the abaxial leaf surface (ALS), and ladybeetle tarsal morphology were examined.
Ladybeetle's oviposition preference had no correlation with offspring performance but positively correlated with fecundity. Further, oviposition preference to leaf discs and fecundity positively correlated with attachment force. The cannibalism risk was not significantly different between plant species. The ALS of Chinese kale and eggplant supported the smallest and the largest attachment forces, respectively. The first one had epicuticular wax crystals, whereas the latter had stellate trichomes. The ALS of cotton and sweetpotato did not bear wax crystals or long trichomes. Cucumber leaves were covered with tapered trichomes. Tenant setae on the distal second tarsomere and a pair of curved, tapered claws on the distal fourth tarsomere were the attachment structures of S. japonicum, which interacted with the plant surface structures and generated the attachment force.
Plant morphological traits, associated with ladybeetle attachment force and adult performance might be key factors in ladybeetle oviposition preference, and are expected to occur in other host plant herbivore-predator systems.
Plant morphological traits, associated with ladybeetle attachment force and adult performance might be key factors in ladybeetle oviposition preference, and are expected to occur in other host plant herbivore-predator systems.Bioimprinting is an easy, sustainable and low-cost technique that promotes a printing of potential substrates on enzyme structure, inducing a more selective and stable conformation. Bioimprinting promotes conformational changes in enzymes, resulting in better catalytic performance. In this work, the effect of bioimprinting of Burkholderia cepacia lipase (BCL) and porcine pancreatic extracts (PPE) with four different fatty acids (lauric acid (C120), myristic acid (C140), palmitic acid (C160), and stearic acid (C180)) was investigated. The results demonstrated that the better bioimprinting effect was in BCL with lauric acid in esterification reaction, promoting BCL activation in which relative enzyme activity was 70 times greater than nonimprinted BCL. Bioimprinting results were influenced by the carbon chain length of fatty acids imprinted in the BCL, in which the effects were weaker with the chain increase. Molecular docking was performed to better understand the bioimprinting method. The results of these simulations showed that indeed all fatty acids were imprinted in the active site of BCL. However, lauric acid presented the highest imprinting preference in the active site of BCL, resulting in the highest relative activity. Furthermore, Fourier transform infrared (FTIR) analysis confirmed important variations in secondary structure of bioimprinting BCL with lauric acid, in which there was a reduction in the α-helix content and an increase in the β-sheet content that facilitated substrate access to the active site of BCL and led higher rigidity, resulting in high activity. Bioimprinted BCL with lauric acid showed excellent operational stability in esterification reaction, maintaining its original relative activity after five successive cycles. Thus, the results show that bioimprinting of BCL with lauric acid is a successful strategy due to its high catalytic activity and reusability.The basal transcription factor II H (TFIIH) is a multicomponent complex. In the present study, we characterized a TFIIH subunit Tfb5 by analysing loss- and gain-of-function mutants to gain a better understanding of the molecular mechanisms underlying stress resistance and pathogenicity in the citrus fungal pathogen Alternaria alternata. Tfb5 deficiency mutants (ΔAatfb5) decreased sporulation and pigmentation, and were impaired in the maintenance of colony surface hydrophobicity and cell wall integrity. ΔAatfb5 increased sensitivity to ultraviolet light, DNA-damaging agents, and oxidants. The expression of Aatfb5 was up-regulated in the wild type upon infection in citrus leaves, implicating the requirement of Aatfb5 in fungal pathogenesis. Biochemical and virulence assays revealed that ΔAatfb5 was defective in toxin production and cellwall-degrading enzymes, and failed to induce necrotic lesions on detached citrus leaves. Aatfb5 fused with green fluorescent protein (GFP) was localized in the cytoplasm and nucleus and physically interacted with another subunit, Tfb2, based on yeast two-hybrid and co-immunoprecipitation analyses. Transcriptome and Antibiotics & Secondary Metabolite Analysis Shell (antiSMASH) analyses revealed the positive and negative roles of Aatfb5 in the production of various secondary metabolites and in the regulation of many metabolic and biosynthetic processes in A. alternata. Aatfb5 may play a negative role in oxidative phosphorylation and a positive role in peroxisome biosynthesis. Two cutinase-coding genes (AaCut2 and AaCut15) required for full virulence were down-regulated in ΔAatfb5. find more Overall, this study expands our understanding of how A. alternata uses the basal transcription factor to deal with stress and achieve successful infection in the plant host.
Website: https://www.selleckchem.com/products/wz4003.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team