Notes
![]() ![]() Notes - notes.io |
Highly stable superprotonic conductivity (>10-2 S cm-1) has been achieved through the unprecedented solvent-free-coordinative urea insertion in MOF-74 [M2(dobdc), M = Ni2+, Mg2+; dobdc = 2,5-dioxido-1,4-benzenedicarboxylate] without an acidic moiety. The urea is bound to open metal sites and alters the void volume and surface functionality, which triggers a significant change in proton conductivity and diffusion mechanism. Solid-state 2H NMR revealed that the high conductivity was attributed to the strengthening of the hydrogen bonds between guest H2O induced by hydrogen bonds in the interface between H2O and the polarized coordinated urea.Ganglioside GM3 is a sialylated membrane-based glycosphingolipid that regulates insulin receptor signaling via direct association with the receptor. The level of expression of GM3 synthase (GM3S) and GM3 is increased in tissues of patients with diabetes and murine models of diabetes, and obesity-induced insulin resistance is attenuated in GM3S-deficient mice. Therefore, GM3S has been considered a therapeutic target for type II diabetes; however, no GM3S inhibitors have been reported to date. In this study, we established a high-throughput scintillation proximity assay that can detect GM3S activity to screen GM3S inhibitors from our original chemical library. We also established methods for detecting the activity of GM3S and another sialyltransferase, ST3Gal3, through direct measurement of the enzyme products using an automatic rapid solid-phase extraction system directly coupled to a mass spectrometer. Consequently, we successfully identified two different chemotypes of GM3S-selective inhibitors with a mixed mode of inhibition. We believe that these compounds can be further developed into drugs to treat or prevent diabetes as well as contribute to the development of the ganglioside research field.Because of the permission of the manipulations of modular construction on the atomic level, covalent organic frameworks (COFs) have attracted extensive attention in the electrocatalytic field. Owing to the lack of metal sites in pristine COFs constructed only by metal-free organic building units, it generally exhibits extremely low electrocatalytic activity. Thereby, linking metal sites on the backbone of pyrolysis-free COFs but not loading them on the surface to enhance the electrocatalytic activity is highly desirable but still remains a huge challenge. To this end, herein, we report an efficient and general cation-exchange strategy to synthesize Ni/Fe metal-ion-incorporated COFs (NixFe1-x@COF-SO3) for the oxygen evolution reaction (OER) based on the fundamental structure design of COFs. Impressively, the turnover frequency (TOF) value in Ni0.5Fe0.5@COF-SO3 reaches 0.14 s-1 at the overpotential of 300 mV, which outperforms most recently reported OER electrocatalysts, indicative of ultrahigh metal-atom utilization efficiency.Natural enzyme complex with the subunits cooperating with each other could catalyze cascade reactions in biological system but, just like the limitation of free-floating natural enzymes, usually suffer from deactivation in harsh environment such as high temperature. In this study, a purpose-driven design of amphiphilic aerogel working as the enzymes-immobilization substrate to form the multienzyme complex (MEC) was demonstrated. The aerogel was synthesized only by a single polymer poly(vinyl alcohol) (PVA) as well as a surface modulator maleic acid (MA), the incorporation of which tunes the surface wettability. The usage of the amphiphilic aerogel may do favor for multienzyme immobilization, conserving the enzyme conformation as well as stabilizing the enzymes in high temperature. As a typical example, glucose oxidase and hemin were firmly coimmobilized in the aerogel matrix and actively catalyze the cascade reactions of (i) glucose to gluconic acid and (ii) 3,3,5,5-tetramethylbenzidine (TMB) to its oxidized state. The enzymes could resist the degradation under high temperature (70-100 °C) which is witnessed by the rate of decrease in activity was progressively slackened. Taking the advantage of the chromogenic reaction of TMB, a glucose sensor based on aerogel-enzyme composite for glucose detection in whole blood and sweat was established, exhibiting reliable results and satisfactory recovery. The modified aerogel could also withstand multiple physical deformation meantime maintaining good adsorption capacity as well as catalytic performance. The enzymes-loading aerogel model may hopefully contribute to composing sensors based on other analytes.The problem of controlling cells endowed with a genetic toggle switch has been recently highlighted as a benchmark problem in synthetic biology. find more It has been shown that a carefully selected periodic forcing can balance a population of such cells in an undifferentiated state. The effectiveness of these control strategies, however, can be hindered by the presence of stochastic perturbations and uncertainties typically observed in biological systems and is therefore not robust. Here, we propose the use of feedback control strategies to enhance robustness and performance of the balancing action by selecting in real-time both the amplitude and the duty-cycle of the pulsatile inputs affecting the toggle switch behavior. We show, via in silico experiments and realistic agent-based simulations, the effectiveness of the proposed strategies even in the presence of uncertainties, stochastic effects, cell growth, and inducer diffusion. In so doing, we confirm previous observations made in the literature about coherence of the population when pulsatile forcing inputs are used, but, contrary to what was proposed in the past, we leverage feedback control techniques to endow the balancing strategy with unprecedented robustness and stability properties. We compare via in silico experiments different external control solutions and show their advantages and limitations from an in vivo implementation viewpoint.Covalent organic frameworks (COFs) with improved stability and extended π-conjugation structure are highly desirable. Here, two imine-linked COFs were converted into ultrastable and π-conjugated fused-aromatic thieno[3,2-c]pyridine-linked COFs (B-COF-2 and T-COF-2). The successful conversion was confirmed by infrared and solid-state 13C NMR spectroscopies. Furthermore, the structures of thieno[3,2-c]pyridine-linked COFs were evaluated by TEM and PXRD. It is noted that a slight difference in the structure leads to totally different photoactivity. The fully π-conjugated T-COF-2 containing triazine as the core exhibited an excellent photocatalytic NADH regeneration yield of 74% in 10 min.
Read More: https://www.selleckchem.com/products/jzl184.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team