Notes
![]() ![]() Notes - notes.io |
The physiological characteristics of the marmoset second visual area (V2) are poorly understood compared with those of the primary visual area (V1). In this study, we observed the physiological response characteristics of V2 neurons in four healthy adult marmosets using intracortical tungsten microelectrodes. We recorded 110 neurons in area V2, with receptive fields located between 8° and 15° eccentricity. Most (88.2%) of these neurons were orientation selective, with half-bandwidths typically ranging between 10° and 30°. A significant proportion of neurons (28.2%) with direction selectivity had a direction index greater than 0.5. The vast majority of V2 neurons had separable spatial frequency and temporal frequency curves and, according to this criterion, they were not speed selective. The basic functional response characteristics of neurons in area V2 resemble those found in area V1. click here Our findings show that area V2 together with V1 are important in primate visual processing, especially in locating objects in space and in detecting an object's direction of motion. The methods used in this study were approved by the Monash University Animal Ethics Committee, Australia (MARP 2009-2011) in 2009.Studies have shown that microRNAs (miRNAs) mediate posttranscriptional regulation of target genes and participate in various physiological and pathological processes, including peripheral nerve injury. However, it is hard to select key miRNAs with essential biological functions among a large number of differentially expressed miRNAs. Previously, we collected injured sciatic nerve stumps at multiple time points after nerve crush injury, examined gene changes at different stages (acute, sub-acute, and post-acute), and obtained mRNA expression profiles. Here, we jointly analyzed mRNAs and miRNAs, and investigated upstream miRNAs of differentially expressed mRNAs using Ingenuity Pathway Analysis bioinformatic software. A total of 31, 42, 30, and 23 upstream miRNAs were identified at 1, 4, 7, and 14 days after rat sciatic nerve injury, respectively. Temporal expression patterns and biological involvement of commonly involved upstream miRNAs (miR-21, let-7, miR-223, miR-10b, miR-132, miR-15b, miR-127, miR-29a, miR-29b, and miR-9) were then determined at multiple time points. Expression levels of miR-21, miR-132, miR-29a, and miR-29b were robustly increased after sciatic nerve injury. Biological processes involving these miRNAs include multicellular organismal response to stress, positive regulation of the epidermal growth factor receptor signaling pathway, negative regulation of epithelial cell differentiation, and regulation of myocardial tissue growth. Moreover, we constructed mechanistic networks of let-7, miR-21, and miR-223, the most significantly involved upstream miRNAs. Our findings reveal that multiple upstream miRNAs (i.e., let-7, miR-21, and miR-223) were associated with gene expression changes in rat sciatic nerve stumps after nerve injury, and these miRNAs play an important role in peripheral nerve regeneration. This study was approved by the Experimental Animal Ethics Committee of Jiangsu Province of China (approval No. 20190303-18) on March 3, 2019.In vertebrates, most somatosensory pathways begin with the activation of dorsal root ganglion (DRG) neurons. The development of an appropriate DRG culture method is a prerequisite for establishing in vitro peripheral nerve disease models and for screening therapeutic drugs. In this study, we compared the changes in morphology, molecular biology, and transcriptomics of chicken embryo DRG cultured on tissue culture plates (T-DRG) versus three-dimensional collagen hydrogels (C-DRG). Our results showed that after 7 days of culture, the transcriptomics of T-DRG and C-DRG were quite different. The upregulated genes in C-DRG were mainly related to neurogenesis, axon guidance, and synaptic plasticity, whereas the downregulated genes in C-DRG were mainly related to cell proliferation and cell division. In addition, the genes related to cycles/pathways such as the synaptic vesicle cycle, cyclic adenosine monophosphate signaling pathway, and calcium signaling pathway were activated, while those related to cell-cycle pat the existing Schwann cells in C-DRG. These results suggest that C-DRG may be a promising in vitro culture model, with better nerve growth and anti-apoptotic ability, quiescent Schwann cells, and higher viability. Results from this study provide a reference for the construction, storage, and transportation of tissue-engineered nerves. The study was approved by the Ethics Committee of Aier School of Ophthalmology, Central South University, China (approval No. 2020-IRB16), on March 15, 2020.High mobility group box 1 (HMGB1) interacts with pattern-recognition receptors of immune cells to activate the inflammatory response. Astrocytes play a positive role in the inflammatory response of the central nervous system by expressing a broad range of pattern-recognition receptors. However, the underlying relationship between HMGB1 and the inflammatory reaction of astrocytes remains unclear. In this study, we established rat models of spinal cord injury via laminectomy at the T8-10 level, and the injured spinal cord was subjected to transcriptome sequencing. Our results showed that the HMGB1/Toll-like receptor 4 (TLR4) axis was involved in the activation of astrocyte inflammatory response through regulation of cyclooxygenase 2 (COX2)/prostaglandin E2 (PGE2) signaling. Both TLR4 and COX2 were distributed in astrocytes and showed elevated protein levels following spinal cord injury. Stimulation of primary astrocytes with recombinant HMGB1 showed that COX2 and microsomal PGE synthase (mPGES)-1, rather than COX1, mPGES-2, or cytosolic PGE synthase, were significantly upregulated. Accordingly, PGE2 production in astrocytes was remarkably increased in response to recombinant HMGB1 challenges. Pharmacologic blockade of TLR2/4 attenuated HMGB1-mediated activation of the COX2/PGE2 pathway. Interestingly, HMGB1 did not impact the production of tumor necrosis factor-α or interleukin-1β in astrocytes. Our results suggest that HMGB1 mediates the astrocyte inflammatory response through regulating the COX2/PGE2 signaling pathway. The study was approved by the Laboratory Animal Ethics Committee of Nantong University, China (approval No. 20181204-001) on December 4, 2018.
Homepage: https://www.selleckchem.com/products/pp2.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team