Notes
Notes - notes.io |
sistance of restricted rabbit to digestive troubles.Adolescent alcohol use is associated with adverse psychosocial outcomes, including an increased risk of alcohol use disorder in adulthood. It is therefore important to identify risk factors of alcohol initiation in adolescence. Research to date has shown that altered neural activation to reward is associated with alcohol use in adolescence; however, few studies have focused on neural activation to loss and alcohol use. The current study examined neural activation to loss and reward among 64 alcohol naive 12-14 year olds that did (n = 20) and did not initiate alcohol use by a three year follow-up period. Results showed that compared to adolescents that did not initiate alcohol use, adolescents that did initiate alcohol use by the three year follow-up period had increased activation to loss in the left striatum (i.e., putamen), right precuneus, and the brainstem/pons when they were alcohol naive at baseline. By contrast, alcohol initiation was not associated with neural activation to winning a reward. These results suggest that increased activation in brain regions implicated in salience, error detection/self-referential processing, and sensorimotor function, especially to negative outcomes, may represent an initial vulnerability factor for alcohol use in adolescence.Older compared with younger adults walk with different configurations of mechanical joint work and greater muscle activation but it is unclear if age, walking speed, and slope would each affect the relationship between muscle activation and net joint work. We hypothesized that a unit increase in positive but not negative net joint work requires greater muscle activation in older compared with younger adults. Gefitinib nmr Healthy younger (age 22.1 yrs, n = 19) and older adults (age 69.8 yrs, n = 16) ascended and descended a 7° ramp at slow (~1.20 m/s) and moderate (~1.50 m/s) walking speeds while lower-extremity marker positions, electromyography, and ground reaction force data were collected. Compared to younger adults, older adults took 11% (incline) and 8% (decline) shorter strides, and performed 21% less positive ankle plantarflexor work (incline) and 19% less negative knee extensor work (decline) (all p .05) the regression coefficients between the muscle activation integral and positive hip extensor or ankle plantarflexor work during ascent, nor between that and negative knee extensor or ankle dorsiflexor work during descent. With increased walking speed, muscle activation tended to increase in younger but changed little in older adults across ascent (10 ± 12% vs. -1.0 ± 10%) and descent (3.6 ± 10.2% vs. -2.6 ± 7.7%) (p = .006, r = 0.47). Age does not affect the relationship between muscle activation and net joint work during incline and decline walking at freely-chosen step lengths. The electromechanical cost of joint work production does not underlie the age-related reconfiguration of joint work during walking.Anterior cruciate ligament (ACL) injury is a common and severe knee injury in sports. Knee flexion, abduction and internal rotation angles are considered crucial biomechanical indicators of the ACL injury risk but currently are computed in a laboratory with an optical motion capture. This paper introduces an inertial measurement unit (IMU) based algorithm for knee flexion, abduction and internal rotation estimation during ACL injury risk assessment tests, including drop landing and cutting tasks. This algorithm includes a special two-step complementary-based orientation filter and a special single-pose sensor-to-segment calibration procedure. Fourteen healthy subjects performed double-leg, single-leg drop landing and cutting tasks. Each subject wore four IMUs and reflective marker clusters on their thighs and shanks. For the presented knee angles algorithm with an empirical initial segment orientation, the root mean square errors (RMSEs) of the estimated continuous knee flexion, abduction and internal rotation cross all the movement tasks were 1.07°, 2.87° and 2.64°, and RMSEs of the peak knee flexion and peak knee abduction errors were 1.22° and 3.82°. The knee angles algorithm was capable of estimating knee abduction and internal rotation angles during drop landing and cutting tasks, and knee flexion estimation was substantially more accurate than previously reported approaches. Additionally, we found that for the presented algorithm, the accuracy of initial segment orientation was a critical factor for knee abduction and internal rotation estimations. The presented IMU-based knee angles algorithm could serve as a foundation to enable in-field biomechanical ACL injury risk assessment.Ankle sprains are among the most common musculoskeletal injuries. They are not isolated innocuous injuries as 30-40% of people who sprain their ankles develop chronic ankle instability. Ankle instability is typically assessed under passive unloaded conditions, ignoring any potential contribution of joint loading or muscle activation to the maintenance of ankle stability. Thus, the relevance of unloaded ankle stability assessments to the evaluation of impairments in chronic ankle instability or the prediction of future ankle sprains is questionable. Ankle impedance, which quantifies the resistance to an imposed rotation, has often been used to quantify ankle stability. However, few studies have investigated impedance in the frontal plane where sprains occur, and none have systematically investigated the effect of weight-bearing on ankle impedance. The objective of this study was to determine whether weight-bearing affects frontal plane ankle impedance. We had subjects systematically alter the weight on the tested ankle, while imposed frontal plane rotations were applied to estimate the impedance. We found that ankle stiffness, the static component of impedance, increased proportionally with the weight on the ankle. This increase in stiffness was due to a combination of the increase loading on the joint and the increase in muscle activation that occurs during weight-bearing. Finally, we found that men had a greater stiffness than women over the majority of the weight-bearing range. These results highlight the importance of clinically assessing ankle stability during weight-bearing conditions to better determine the impairments in chronic ankle instability and identify those at risk for ankle sprains.
Homepage: https://www.selleckchem.com/products/Gefitinib.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team