Notes
![]() ![]() Notes - notes.io |
Diapause is a form of dormancy, and Bombyx mori silkworm embryos are ideal models for studying diapause in insects. However, molecular events in eggs during the onset of diapause remain unclear. In this study, transcriptome analyses were performed on silkworm diapause eggs via RNA sequencing at 20 and 48 h after oviposition. A total of 6402 differentially expressed genes (DEGs) were detected in diapause eggs at 48 h versus that at 20 h after oviposition. Gene ontology enrichment analysis showed that DEGs in diapause eggs at 48 h versus that at 20 h after oviposition were involved in ribosome-related metabolism and hydrogen transport. Kyoto Encyclopedia of Genes and Genomes analysis revealed several significantly enriched biological pathways, namely the oxidative phosphorylation, Forkhead box protein O3 (FoxO) signaling, ribosome, endoplasmic reticular protein processing, and autophagy pathways. Fifteen DEGs from the FoxO signaling pathway were selected, and their expression profiles were consistent with the transcriptome results from real-time quantitative reverse transcription polymerase chain reaction. Our results can improve understanding of the diapause mechanism in silkworm eggs and identified key pathways for future studies.Global insect decline impacts ecosystem resilience; pollinators such as honeybees (Apis mellifera L.) have suffered extensive losses over the last decade, threatening food security. Research has focused discretely on in-hive threats (e.g., Nosema and Varroa destructor) and broader external causes of decline (e.g., agrochemicals, habitat loss). This has notably failed to translate into successful reversal of bee declines. Working at the interdisciplinary nexus of entomological, social and ecological research, we posit that veterinary research needs to adopt a "One-Health" approach to address the scope of crises facing pollinators. We demonstrate that reversing declines will require integration of hive-specific solutions, a reappraisal of engagement with the many stakeholders whose actions affect bee health, and recontextualising both of these within landscape scale efforts. Other publications within this special issue explore novel technologies, emergent diseases and management approaches; our aim is to place these within the "One-Health" context as a pathway to securing honeybee health. Governmental policy reform offers a particularly timely pathway to achieving this goal. Acknowledging that healthy honeybees need an interdisciplinary approach to their management will enhance the contributions of veterinary research in delivering systemic improvements in bee health.Blood is a readily accessible biofluid containing a plethora of important proteins, nucleic acids, and metabolites that can be used as clinical diagnostic tools in diseases, including cancer. Like the on-going efforts for cancer biomarker discovery using the liquid biopsy detection of circulating cell-free and cell-based tumor nucleic acids, the circulatory proteome has been underexplored for clinical cancer biomarker applications. A comprehensive proteome analysis of human serum/plasma with high-quality data and compelling interpretation can potentially provide opportunities for understanding disease mechanisms, although several challenges will have to be met. Serum/plasma proteome biomarkers are present in very low abundance, and there is high complexity involved due to the heterogeneity of cancers, for which there is a compelling need to develop sensitive and specific proteomic technologies and analytical platforms. To date, liquid chromatography mass spectrometry (LC-MS)-based quantitative proteomics has been a dominant analytical workflow to discover new potential cancer biomarkers in serum/plasma. 10058-F4 in vivo This review will summarize the opportunities of serum proteomics for clinical applications; the challenges in the discovery of novel biomarkers in serum/plasma; and current proteomic strategies in cancer research for the application of serum/plasma proteomics for clinical prognostic, predictive, and diagnostic applications, as well as for monitoring minimal residual disease after treatments. We will highlight some of the recent advances in MS-based proteomics technologies with appropriate sample collection, processing uniformity, study design, and data analysis, focusing on how these integrated workflows can identify novel potential cancer biomarkers for clinical applications.Keratinases are considerably gaining momentum in green technology because of their endowed robustness and multifaceted application potentials, such as keratinous agro-wastes valorization. Therefore, the production of novel keratinases from relatively nonpathogenic bacteria grown in agro-wastes formulated medium is cost-effective, and also imperative for the sustainability of thriving bioeconomy. In this study, we optimized keratinase production by Bacillus sp. Nnolim-K1 grown in chicken feather formulated medium. The produced keratinase (KerBNK1) was biochemically characterized and also, the keratinase-encoding gene (kerBNK1) was amplified and sequenced. The optimal physicochemical conditions for extracellular keratinase production determined were 0.8% (w/v) xylose, 1.0% (w/v) feather, and 3.0% (v/v) inoculum size, pH 5.0, temperature (25 °C) and agitation speed (150 rpm). The maximum keratinase activity of 1943.43 ± 0.0 U/mL was achieved after 120 h of fermentation. KerBNK1 was optimally active at pH and temperature of 8.0 and 60 °C, respectively; with remarkable pH and thermal stability. KerBNK1 activity was inhibited by ethylenediamine tetra-acetic acid and 1,10-phenanthroline, suggesting a metallo-keratinase. The amplified kerBNK1 showed a band size of 1104 bp and the nucleotide sequence was submitted to the GenBank with accession number MT268133. Bacillus sp. Nnolim-K1 and the keratinase displayed potentials that demand industrial and biotechnological exploitations.Stroke remains the leading cause of adult disability. Post-stroke neurogenesis contributes to functional recovery. As an intrinsic neurorestorative process, it is important to elucidate the molecular mechanism underlying stroke-induced neurogenesis and to develop therapies designed specifically to augment neurogenesis. Epigenetic mechanisms include DNA methylation, histone modification and its mediation by microRNAs and long-non-coding RNAs. In this review, we highlight how epigenetic factors including DNA methylation, histone modification, microRNAs and long-non-coding RNAs mediate stroke-induced neurogenesis including neural stem cell self-renewal and cell fate determination. We also summarize therapies targeting these mechanisms in the treatment of stroke.
My Website: https://www.selleckchem.com/products/10058-f4.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team