NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Sitting for very long durations is assigned to impaired operate performance in the COVID-19 pandemic.
Currently, most of the greenhouse gas (GHG) emissions are attributed to cities, as they are the global centers of business, residential and cultural activity, cities are expected to play a leading role in proposing climate change mitigation actions. To do so, it is important to have tools that allow the carbon footprint of cities to be assessed as accurately as possible. This study aims to quantify the carbon footprint (CF) associated with the activities developed in a Spanish city (Cadiz, Southwest Spain) by means of two available environmental methodologies, namely Environmentally Extended Input-Output Analysis (EEIOA) and Life Cycle assessment (LCA). When EEIOA is considered, two downscaling factors were proposed for the analysis due to the nature of the data handled (monetary data), based on the incomes (DF1) and expenditures (DF2) per inhabitant at city level. Regarding LCA, the rates of consumption of goods and production of waste per inhabitant have been processed to estimate the CF. The CF scores identified were 5.25 and 3.83 tCO2-eq·inhabitant-1·year-1 for DF1 and DF2 respectively, according to EEIOA, and 5.43 tCO2-eq·inhabitant-1·year-1, considering LCA. Therefore, a similarity can be concluded between the results obtained with both methodologies despite the inherent differences. Considering the results, the downscaling procedure based on income per inhabitant should be preferred, pointing to EEIOA as a good alternative to LCA for evaluating the CF at city level, requiring less time and effort. In contrast, EEIOA reports more limitations when critical flows were identified, which LCA can solve. Finally, this study can be of great interest to policy makers and city governments to know the CF and the main flows that contribute and in this way, can develop new policies and city models for reducing GHG emission new policies and city models for reducing GHG emission and addressing climate change.Pharmaceutical substances present at low concentrations in the environment may cause effects on biological systems such as microbial consortia living on solid riverbed substrates. These consortia are an important part of the river ecosystem as they form part of the food chain. This case study aims to contribute to an increased understanding of how low levels of pharmaceuticals in freshwater streams may influence sessile bacterial consortia. An important point source for pharmaceutical release into the environment is treated household sewage water. In order to investigate what types of effects may occur, we collected water samples as well as riverbed substrates from a small stream in the south of Sweden, Knivstaån, upstream and downstream from a sewage treatment plant (STP). Data from these samples formed the base of this case study where we investigated both the presence of pharmaceuticals in the water and bacterial composition on riverbed substrates. In the water downstream from the STP, 19 different pharmaceuticals were detected at levels below 800 ng/dm3. The microbial composition was obtained from sequencing 16S rRNA genes directly from substrates as well as from cultivated isolates. The cultivated strains showed reduced species variability compared with the data obtained directly from the substrates. SGC-CBP30 in vitro No systematic differences were observed following the sampling season. However, differences could be seen between samples upstream and downstream from the STP effluent. We further observed large similarities in bacterial composition on natural stones compared to sterile stones introduced into the river approximately two months prior to sampling, giving indications for future sampling methodology of biofilms.Different human activities have caused and currently cause catastrophic environmental phenomena, and unfortunately, a significant negative contribution to these catastrophic phenomena can be attributed to uncontrolled plastic production, use and release everywhere. On the other hand, the plastics offer numerous comforts and advantages, and for this reason, the modern life is unthinkable without plastic. Currently, numerous scientific papers and large audience advertisings, related to the production and use of polymers made by natural sources, i.e. bio-based polymers, as a valid alternative to the petroleum-based counterparts, have been published. Therefore, for production of daily disposables and usages, the choice of petroleum-based polymers, coming from fossil-based resources, or bio-based polymers, coming from renewable resources, can be correctly understood and evaluated taking into account different issues concerning resources supplying, production technology and costs, application properties and performance, and finally, waste management. Current paper is focused on a reflection point related to waste management through burning/incineration (i.e. oxidation) of disposable beverage cups (volume 200 ml). The simple calculations of oxidation process of petrol-based or bio-based materials, which is the theoretical basis of waste management through burning/incineration, highlights that none of cup materials, can be considered better than the others to produce daily disposables and usages.Chemical looping combustion (CLC) is a promising CO2 capture technology; which expected to achieve 100% capture efficiency with a low energy penalty. The principle of CLC is utilizing metal particles (known as an oxygen carrier) as a medium for transport oxygen between two reactors, aiming to avoid nitrogen in combustion exhaust. Oxygen carrier is considered a key parameter in CLC, so it received particular interest in this study. CLC is an emerging technology; it received sensible attention at the beginning of this century, whether in analytical studies, TGA tests, or else. However, the first test in continuous operation was carried out in 2004 for gaseous fuel and followed by many experiments. Solid fuel was tested after gaseous ones and then received significant attention due to their high contribution to CO2 emissions. Besides, it could accomplish negative emissions in the case of biomass-based fuel. In contrast, liquid fuels have not received considerable interest for not enough justified reasons, despite their negative emission options; whatever, the feasibility of liquid CLC has also proved in continuous tests.
My Website: https://www.selleckchem.com/products/sgc-cbp30.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.