Notes
![]() ![]() Notes - notes.io |
Inductive Teaching Method (ITM) promotes effective learning in technological education (Felder & Silverman, 1988). Students prefer ITM more as it makes the subject easily understandable (Goltermann, 2011). The ITM motivates the students to actively participate in class activities and therefore could be considered a better approach to teach computer programming. There has been little research on implementing ITM in computer science courses despite its potential to improve effective learning. In this research, an existing computer programming lab course is taught using a traditional Deductive Teaching Method (DTM). The course is redesigned and taught by adopting the ITM instead. Furthermore, a comprehensive plan has been devised to deliver the course content in computer labs. The course was evaluated in an experiment consisting of 81 undergraduate students. The students in the Experimental Group (EG) (N = 45) were taught using the redesigned ITM course, whereas the students in the Control Group (CG) (N = 36) were taught using the DTM course. The performance of both groups was compared in terms of the marks obtained by them. A pre-test conducted to compare pre-course mathematical and analytical abilities showed that CG was better in analytical reasoning with no significant differences in mathematical abilities. DNA Damage inhibitor Three post-tests were used to evaluate the groups theoretical and practical competence in programming and showed EG improved performance with large, medium, and small effect sizes as compared to CG. The results of this research could help computer programming educators to implement inductive strategies that could improve the learning of the computer programming.Habitat selection links individual behavior to population abundance and dynamics, so evaluation of habitat selection is necessary for conservation and management. Land management can potentially alter both the structure and composition of habitats, thus influencing habitat selection and population size. Livestock grazing is the dominant land use worldwide and, while overstocking has been linked to the decline of many wildlife species, properly managed grazing could improve habitat quality and maintain native rangeland habitats. We evaluated breeding season habitat selection of female sharp-tailed grouse, an indicator species for grassland ecosystems, in relation to grazing management and landscape features in eastern Montana and western North Dakota. At broad spatial scales, females selected for multiple landscape features, including grassland, but exhibited no selection for either landscape or management variables when selecting habitat at smaller spatial scales. Females selected for pastures managed with rest-rotation grazing when choosing a home range, but selection did not equate to improved fitness. Moreover, we observed strong individual variation in both home range size and third-order habitat selection. While the high variability among individuals makes specific management recommendations difficult, selection for grassland habitats at broad scales suggests that strategies that maintain intact native rangelands are important for the conservation of sharp-tailed grouse.The B7 family represents one of the best-studied subgroups within the Ig superfamily, yet new interactions continue to be discovered. However, this binding promiscuity represents a major challenge for defining the biological contribution of each specific interaction. We developed a strategy for addressing these challenges by combining cell microarray and high-throughput FACS methods to screen for promiscuous binding events, map binding interfaces, and generate functionally selective reagents. Applying this approach to the interactions of mPD-L1 with its receptor mPD-1 and its ligand mB7-1, we identified the binding interface of mB7-1 on mPD-L1 and as a result generated mPD-L1 mutants with binding selectivity for mB7-1 or mPD-1. Next, using a panel of mB7-1 mutants, we mapped the binding sites of mCTLA-4, mCD28 and mPD-L1. Surprisingly, the mPD-L1 binding site mapped to the dimer interface surface of mB7-1, placing it distal from the CTLA-4/CD28 recognition surface. Using two independent approaches, we demonstrated that mPD-L1 and mB7-1 bind in cis, consistent with recent reports from Chaudhri A et al. and Sugiura D et al. We further provide evidence that while CTLA-4 and CD28 do not directly compete with PD-L1 for binding to B7-1, they can disrupt the cis PD-L1B7-1 complex by reorganizing B7-1 on the cell surface. These observations offer new functional insights into the regulatory mechanisms associated with this group of B7 family proteins and provide new tools to elucidate their function in vitro and in vivo.The burden of enteric pathogens in poultry is growing after the ban of antibiotic use in animal production. Organic acids gained attention as a possible alternative to antibiotics due to their antimicrobial activities, improved nutrient metabolism and performance. The current study was conducted to evaluate the effectiveness of organic acid blend on broilers cecal microbiota, histomorphometric measurements, and short-chain fatty acid production in Salmonella enterica serovar Typhimurium challenge model. Birds were divided into four treatments, including a negative control, positive control challenged with S. Typhimurium, group supplemented with an organic acid blend, and birds supplemented with organic acid blend and Salmonella challenged. Results illustrate significant differences in feed conversion ratios and production efficiency factor between treatment groups, however, the influence of organic acid supplement was marginal. Organic acid blend significantly increased cecal acetic and butyric acids concentrations when compared to unsupplemented groups and resulted in minor alterations of intestinal bacterial communities.Better triage tests for screening tuberculosis (TB) disease are needed for people living with HIV (PLHIV). We performed the first evaluation of a previously-validated 8-antigen serological panel to screen PLHIV for pulmonary TB in Kampala, Uganda. We selected a random 11 sample with and without TB (defined by sputum culture) from a cohort of PLHIV initiating antiretroviral therapy. We used a multiplex microbead immunoassay and an ensemble machine learning classifier to determine the area under the receiver operating characteristic curve (AUC) for Ag85A, Ag85B, Ag85C, Rv0934-P38, Rv3881, Rv3841-BfrB, Rv3873, and Rv2878c. We then assessed the performance with the addition of four TB-specific antigens ESAT-6, CFP-10, Rv1980-MPT64, and Rv2031-HSPX, and every antigen combination. Of 262 participants (median CD4 cell-count 152 cells/μL [IQR 65-279]), 138 (53%) had culture-confirmed TB. The 8-antigen panel had an AUC of 0.53 (95% CI 0.40-0.66), and the additional 4 antigens did not improve performance (AUC 0.51, 95% CI 0.
My Website: https://www.selleckchem.com/products/Azacitidine(Vidaza).html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team